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@ Motivation



MOTIVATION

Objectives

-

Develop real-time, patient specific digital twins for computer-aided surgical
interventions.

@ Image @ 3D reconstruction @ Numerical method @ Surgical navigation

» Simulation of the deformations of organs : PDEs — FEMs,
» Complex geometries —» Unfitted FEMs,
» Real-time constructions —> Machine learning techniques.




VERY SHORT STORY OF FEMs }

(a) Standard FEM (Clough 60s).

e

NG

NV =0 RIS
=00 o, T=00
(b) XFEM (Moes and al., 2006) (c) Shifted Boundary method (d) o-FEM (Duprez and
— Non-classical shape (Main, Scovazzi, 2017) Lozinski, 2020)
functions, — Taylor development nearthe  — Level-set function
CutFEM (Burman, Hansbo, boundary.

2010-2014)
— cutcells and partial integrals.

Problems on complex shapes — unfitted FEMs



® The p-FEM technique
Poisson-Dirichlet equation
Mixed Dirichlet / Neumann boundary conditions
Some other schemes



THE IDEA OF o-FEM }

Level-set function

Q={p<0}andI' = {p =0}.

> Th : o-FEM mesh,

> 7' . cells of 75 cut by the A
boundary (purple triangles), 7

» ., :internal facets of 7, .

A

Example with p(z,y) = —1 + z2 + 42



STANDARD FEM VS p-FEM }
Y/

Example (Poisson-Dirichlet equation)

Standard FEM p-FEM
Find us.t. —aw = Uy i Hnd wsi, —Au = f, in Qp,
u =g, onl. u=pw+g, in Qp.

N
N,

00, T=00




Example (Poisson-Dirichlet equation)

—A(pw +g) = f

ith.

-FEM scheme (Duprez, Lozinski. 2020.)

Find wy, such that forall vy,

V(enwn + gn) - V(pnvn)
Qp,

/ 8(sow+g)sov
- a_ h'Wh h hUh
3Qh3n

+ stabs = frnonvn — stabs .
Qp

N/

Ne,

2,

=00




(p-FEM : STABILIZATION TERMS I}

Example (Poisson-Dirichlet equation) J

—Alpw+g)=f inQs.

0
/ V(prhwn + gn) - V(pnon) — / a*(tphwh + gn)Pnon
Q, aq, on

+oh y /{ whwh+gh)} {%@Ph”h)]

F e FL

(Stab1) :jump over the facets, Ghost penalty '

+ oh? Z / (prnwr + gn) + fr)A(prwp) = Frenvn -
TeTy 2

(Stab2) : least square imposition of the governing equation

1. E.Burman, Ghost penalty, 2010.



THE (o-FEM DUAL VARIANT

\IN'

Main idea

Use the idea of the previous method (direct variant) only in the "boundary cells”
(purple cells) :
Un = Prpr + gn, INQ, .

T\ Ti W —7T




THE (o-FEM DUAL VARIANT

Main idea

Use the idea of the previous method (direct variant) only in the "boundary cells”
(purple cells) :
Un = Prpr + gn, INQ, .

The scheme is given by : find
(un, pr) € Vi X Qp such that

T\ 7w —T
Ouh
Vup - Vop, — —oup
Q o, On
Penalization

v [ 1 1
g Uh — 77PhPh — Gh)\Vh — 7-Ph(qh
+hg ./2"(“ hY/I/z ./!)( h hy} ]/)

h

4 (;15!“ (“h ) 'l'/,,) — ;;;/1,5 (’lfh)

Stabilization

+ fon, Yon € Va,qn € Qn.
Qp

\IN|



THEORETICAL RESULTS i

Theorem (Duprez, Lleras, Lozinski, Vuillemot. In preparation.)

The solution uy, of the given scheme satisfies

lu—unlro, < Ch*||fllka, and |lu—unloq, < CRE?| flliq, -




THEORETICAL RESULTS a

Theorem (Duprez, Lleras, Lozinski, Vuillemot. In preparation.)

The solution uy, of the given scheme satisfies

lu = unlia, < CRfllka,  and  [lu—unlloq, < CR* 2| fllkg, -

Sketch of proof.

Based on the coercivity of the bilinear form,

oup
an (Un, Ph; Vh, qn) = Vuh-Vvh—/ ——Un
Qp, 29, on

1 1 s
+ ;72 / (un — P — gn)(Vh — 7Pnan) + Gh'* (un, vn).
ar h h

Main difficulty : absorb the boundary term, which is done using an integration by
partson €, \ 2 and the stabilization terms.




NUMERICAL RESULTS

Theorem (Duprez, Lleras, Lozinski, Vuillemot. In preparation.)

The solution wp, of the given scheme satisfies

lu — unl1,0, < Ch*|flla, and

lw — unllo,0, < Chk+1/2||f||k79h c

v
Test case : Poisson on disk

o1(z,y) = —0.3125% + (z — 0.5)> + (y — 0.5)7,

wa(x,y) = —0.3125 + /(z — 0.5)2 + (y — 0.5)2. Plain lines

L? Relative error

K9

—=— Standard FEM
—o— Direct p-FEM
—<— Dual ¢-FEM

6x 107 10-2 2% 1072

3% 1072 4% 1072

—

H' Relative error

__ —=— Standard FEM
.-~ —e— Direct ¢-FEM
—<— Dual ¢y-FEM

6% 1070 102 2%1077  3x10724x 1072

h

Dashed lines

p



MIXED DIRICHLET / NEUMANN BOUNDARY CONDITIONS.

The problem

We want to solve
—Au  =f, inQ,
u =0, onlp,
Vu-n =0, onl'y,

Q

o

Examples of considered situations.

Tools to do it : o-FEM Neumann * + -FEM dual variant.

a. Anew ¢-FEM approach for problems with natural boundary conditions. Duprez, Lleras, Lozinski. 2023.

J




CONSTRUCTION OF THE SET OF CELLS AND FACETS a

Introduce v such that
FDZFﬂ{1/)<O} and T'y ZFQ{Q[J>O}.
Hence, we can define

v

7;FD ={T € TE by < OonT} and 7;?\ ={T € T 4, > 0o0n T},

T 77,1'1) I vrhl'\ T,,I It

Tp Ty T
e T Ty T T
nterface ]:]’M — ]:,|’u — }-h\ — f,l,'”"

—— II ==~ |Interface
1




FINAL SETUP a

We get 3 new variables and 3 additional equations :

PP i I'p .
u=@pp, In€,", . o e
r == Interface

y+Vu=0, inQ", va

yVo+pne =0, inQN.
(using thatn = V/|Vp))




FINAL SETUP a

We get 3 new variables and 3 additional equations :

PP i I'p .
u=@pp, In€,", . o e
r == Interface

y+Vu=0, inQ", va

yVo+pne =0, inQN.
(using thatn = V/|Vp))

The ¢-FEM scheme is given by : find (un, pr.o, yn, pr.n) € W}(Lk) such that for all
(Yh,qn,D, 20, qh,N) € W}(bk).

ou,
Vup - Vop, — / on + ap(Un,Ph,D; Vh, qn,D)
Q 89, \8Q, v on

+ an (Uh, Yy Ph,N; Uk, Zhy Gh,N) = fon+1p(vn) +In(2n) .
Qp,



THE SCHEME : DIRICHLET PART a

7, . T - 7 - T

We want to impose by penalization : P avara

N~
u=epp, inQ,".

Penalization

) " 1 1
D (U, Ph,D; U, 4h.D) = 73 /z"“ (un = 7 ¢nPh.0)(vh = 3 #nan.D)

Yoph Z / |:8’Lth:| {th}

Fe f' ”LJ]-‘I Int

+oph? /  Awau, Stabilization
Q. DyqQ: Int

lD(Uh) = 70'Dh2/_ § fAUh.
ol'Dyqlin



THE SCHEME : NEUMANN PART ’

7 T - 7 . T
— I' === Interface

We want to impose by penalization :

y+Vu=0, inQ",

; yVo+pnve =0, in QZ"\’ .

Boundary term

aN(uhayh»ph,N;’Uh7Zh7qh7N) = / Yn .MU
oy, N

+Yu / x (yn + Vun)(zn + Vor)
QpN

- Penalization
+h§ ( Y - chh+hph Nen)(zh - Von + hqh N©R)
+onh Z / |:(9Uh:| |:8Uh:| +’yd“’/|‘\, divyhdiVZh,
2
" Stabilization

lN(Zh) = Ydiv . fdiVZh.
2



NUMERICAL RESULTS : THE SIMPLE CASE.

We consider f = —1, the domain given by :

(,01(1’, y)
@2(37’ y)

w(z,y)

—0.39° + (z — 0.5)° +

w1(z,y) X 2(z,y) -

and to detect the change of boundary :

(y—0.5)%,

0
— 014+ (¢ — 0.5)2 + (y — 0.5)2, FD@

¥(z,y) = 0.25° — (z — 0.5)> — (y — 0.5).

S

L? Relative error

—e— o-FEM
—=— Standard FEM

102 2x102 5% 10724107

h

Left: L? relative errors.

H' Relative error

—— o-FEM
—=— Standard FEM

6x 1078 102 251072

h

Right: H' relative errors.

3% 10724 102



NUMERICAL RESULTS : A COMPLEX CASE WITH SINGULARITIES. a
We consider f = —1, the domain given by :
o(x,y) = —0.31°+(z—0.5)>+(y—0.5)°.
and to detect the change of boundary :

Y(z,y) =z —0.5.

0t

L? Relative error
H' Relative error

—— o-FEM

—e— o-FEM ¥
—=— Standard FEM

—=— Standard FEM
6x10°% 1072 2x107  3x10774x 1072 6x10°% 1072 2x107  3x10774x 107

h h

Left: L2 relative errors. Right : H' relative errors.



LINEAR ELASTICITY }

Model problem

dive(u)+ f =0,inQ,
u = uf , on FD,
o(u) -n =g, only.
o(u) =2pe(u) + Adivu) I Constraints tensor
e(u) = {(Vu + (Vu)") Deformation tensor
__E A= By Lamé parameters
F=5a+vy 7T @+ —2v) s
How to construct a ¢o-FEM scheme to solve this?
Follow the same recipe than before.




NUMERICAL RESULTS

C

—dive(u) = (0,—pg), inQ, w=0, onT'p, o(u)-n=0, onTx. J

Reference initial geometry
w =0

on

Uref

0

131020 234002 468002 702002 936002
—




NUMERICAL RESULTS

\
[ | T
7o Reference initial geometry
h
- T w =0
h
bl Ty
/ /
L _ 21 _ L4 - _ -
on
!
/
w0 ———
g —— I -FEM 5
° —— H' o-FEM H
¢
2w —=— L?Standard FEM 2
& —— H' Standard FEM K]

Uref i

T
(7
T
14
14
0
N

e
12 o-FEM
/'/

10

H' o-FEM
L? Standard FEM
H' Standard FEM

10




NON-LINEAR ELASTICITY a

Model problem : &~ the same... except non-linear constraints tensor.

—divP(u) =f, inQ,
w =wup,onlp,
P(u)-n =g, only,

with compressible Neo-Hookean material :

_ oW _ B o A 2
P =, whereW = (I =3 = 2In(J)) + S In(J)?,

with F =1 +Vu,C =F" . F, I, = tr(C),and J = det F.

-FEM scheme : ~ the same recipe...

P non-linear = Stabilization terms non-linear in v = need to replace P (v) with
D..(P)(u)v, the derivative of P evaluated in w, in the direction v.




TEST CASE : ROUNDED BEAM z}

. 4 _ 4N 0.25
o(z,y) = <(xo,4(:)545) + (y0.107.45) > —1, 4(z,y)=z—0.3. J

on =10
I'n
n
r
u£0

Uref

0000400 _3.276-02__6.55-02 _9.82¢-02_1.31e-01
L



TEST CASE : ROUNDED BEAM z}

_ 4 _ 4~ 0.25
o(z,y) = <(x0.4g;5) + (y0.1(;f) > -1, o(x,y)=z—0.3. J

on =10
I'n
—— ¢-FEM
—=— Standard FEM
Q -
T 2
u = 0 Z
]
Uref 1072

0000400 _3.276-02__6.55-02 _9.82¢-02_1.31e-01



HEAT EQUATION (1) a

Consider the following problem

Ou—Au =f, inQx(0,7T),
u =0, onlx (0,7),

Ujt—0 :uo, inQ.




HEAT EQUATION (1) a

Consider the following problem

Ou—Au =f, inQx(0,7T),
u =0, onlx (0,7),

Ujt—0 =, inQ.

Time discretization

n+l _

Implicit Euler scheme : given u™ = pw™, find u ow™ ! such that

pw" T —puw” A(pw™™ly = 1




HEAT EQUATION (I1) \ z}

Time discretization

Considered problem

n+1 n
pw —pw ntly _ pntl
du—Au = f, inQx(0,T), Ay Al =1
u =0, onI'x (0,7),
Ujt=0 :uo, inQ.

The proposed scheme

n+1

w n

/ (phA: onvn+ [ V(enwpth) - V(pnvn)
Qp, Qp

0 n+1 U;LL n+1
— —(prwy " )pnvn + stabs = / (— + f @rvp — stabs.
/E,Qh B P o, \At




HEAT EQUATION (I11) \ a

Theorem (Duprez, Lleras, Lozinski, Vuillemot, 2023)

llu — unlliz a1y < Cllu’ - ugl|L2(Qh)

+C(h* + At) (llull 20,7 10— 152y + ||f||H1(O,T;H’€*1(Qh))) )

lu = unllio(n2) < Cllu’® — U2||L2(Qh)

k+1
+C(h"*2 4 At) (||U||H2(0,T;Hk—1(n)) + ||f||H1(o,T;Hk—1(Qh))) .

—o— p-FEM 0t —e— o-FEM

—=— Standard FEM —=— Standard FEM

A 7( A
A Z

10! 10!

h h
Left: 12(H") relative errors. Right : [°° (L?) relative errors.
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© o-FEM and Neural networks
The general framework
Numerical results



OUR FRAMEWORK FOR THE POISSON EQUATION ‘ Z}

In the context of real-time simulations, we need
quasi-instantaneous results.

» ©-FEM: precise but slow — Not real-time
» Neural Networks — Real time
» o-FEM + Neural Networks — Precise and real-time method?

[ Force ]

Go
[ Geometry Neural Network

[Boundary conditions]




OUR FRAMEWORK FOR THE POISSON EQUATION ‘ 2

In the context of real-time simulations, we need
quasi-instantaneous results.

» ©-FEM: precise but slow — Not real-time
» Neural Networks — Real time
» o-FEM + Neural Networks — Precise and real-time method?

Theidea:c ctan operator Gy

(\*
Ph wy

Qp,

uglo,

|

1
Gy i : ug X 1o, o

f

prwe + 9h !

Uy




©-FEM-FNO ( }

How to combine -FEM and neural networks to obtain fast and precise results?

— the Fourier Neural Operator”

a. Z.Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar. Fourier

neural operator for parametric partial differential equations, 2021
w

Why choose the FNO?

» Neural operator: learns a mapping, not a solution,

» Uses FFT — requires Cartesian grid, as ¢-FEM does,
» Can be implemented easily,

» Almost no need to change the underlying architecture when changing the
governing PDE.




WHAT IS THE FNO? (1) ‘ z}

Parametric application :

1 2
ge:anxnyXB N anxnyXB Py R XNy Xnd Hp R7= XNy Xnd Ho

Ha Q N-1
) 0 Rnwxnyxnd 6 anxnyxl anxnyXI.

» Inandoutdimensions: X = (fn, @n, gn) — wn, With f, n, gn and wy,
images of shape (nz, ny),

> Nand N~!:standardization and unstandardization (channel by channel),

» Pyand Qp «embedding and projection»,

3
Po(X)ijr = Z W:,f/Xijk’ + B:G e R,
k=1

— from original dimension 3 to «hidden dimension», ng >> 3.

"Q U
QAX%j_{E:Mé?ga<§:P%%JXﬁy—kBg“>

k=1 (=il

+ B2 cR

— from «hidden dimension» ng4 to final dimension 1.



WHAT IS THE FNO? (I1) ‘ 2

Parametric application :

1 2
ge:anXnyXS N anxnyXS Py ]anxnyxnd Ho R XnyXna Hy

Hg Qo 1 N1 1
) anxnyxnd anxnyx anxnyx .

Each layer 75 is defined by :

Hi= o CH(X) + B4 (X))
o = FH(weFx)) B5(X)isn
20- ng
- with F* the real-FFT and = W,féXijk/JrBfg
oo JFitsinverse. il
IR The coefficients of W< The coefﬁaents of W%
are complex trainable and B® 0 are real

parameters. trainable parameters.



(p-FEM-FNO : RANDOM ELLIPSES ‘ a

First test case

—Au=f,inQ u=g,onT,

» :random rotated ellipse,
» f:random gaussian force with variable amplitude

F@y) = Aexp <_($—N0)2 _ (y—ul)Q) 7

2 2
202 203

> Gla.p)(T,y) = ((:c — 0.5)2 —(y— 0.5)2) cos (Bym) .
Dataset: 1500 training data, 300 validation data, 300 test data.
Random parameters : ellipses parameters and (A, uo, 1, 0z, 0y, @, ).

I ) g . Uy = pwy+g o Utrue = PWire + 9

[thtrue — gl

7 0 7 4 005 002 000 002 004 02 015 007 00l 000 02 015 007 001 009 12407

22404 440004 67304



(p-FEM-FNO : RANDOM ELLIPSES

We try to approximate the operator :

gf: anxnyXB N anxnyxl
(fnson,gn) = wn.

Convergence of the loss function = || - ||1,0,

Evolution of £ on the training Evolution of the relative L2 error
and validation sets on the training and validation sets
—— L(train) —— Lo(train)
—— C(validation) —— Lolvalidation)

1072
Ml "
il uds My, e
0z -
0 2@ s 7% 10 1m0 10 7w 2000 om0 S0 79 w0z 0 w200
Epochs Epochs




(p-FEM-FNO VS OTHER TECHNIQUES ‘ 3}

We compare the following techniques :
> Standard-FEM, -FEM and ¢-FEM-FNO.
» o-FEM-FNO 2 : o-FEM-FNO predicting directly ug :

gG . anxnyxii N anxnyxl
S )
(fhvﬁphvgh) = ug -

> -FEM-UNET : o-FEM-FNO, but using a U-NET.

> Standard-FEM-FNO : FNO trained with standard P* FEM solutions, extrapolated
on Cartesian grids as data.

> Geo-FNO'

a. Z.Li,D.Huang, B. Liu, A. Anandkumar : Fourier Neural Operator with Learned Deformations for PDEs on
Ceneral Geometries. Codes : https://github.com/neuraloperator/Geo- FNO

Using the relative L? error:

Moo — ureillony | Joo Mewrtio — “rEf)Q do

Ot Jo v

b, (Urefy ’(Lg) :

ref ref


https://github.com/neuraloperator/Geo-FNO

(p-FEM-FNO VS OTHER TECHNIQUES

Urer Eo(Uref, Ustg) = 2.080 X 1073 E5(Uper, Up) = 1.900 X 10~3  Ex(Urer, Ug) = 3.211 x 103

11002 _9.4e02 _20e01 31e01 41e0l 50007 24e04 4904 73e-04 9804 17608 33004 _660-04 10003 13e03 22008 4.3e-04 B5e-04 13003 17003
L L L L

Outputs of Standard-FEM, -FEM and -FEM-FNO compared to the reference solution.

YT oFEM < GeoFNO
101 x 1 L Std-FEM > -FEM-UNET
k3 . ] *  -FEM-FNO 2 X o-FEM-FNO
- +  Std-FEM-FNO

1072

Relative L? error Fs
Relative L* error Ey

10°*

1072

%%+%% ‘ |

== = mmEr
. . . -

NO | stdFEM- PO GFEMLUNET v — v
Sta FEM —FEM FNO 2 0-FNO Computation time (s)

Errors of the methods.



(p-FEM-FNO : COMPLEX SHAPES 3}

Second test case

—Au=f,inQ u=g,onTl,

where Q is defined using Gaussian functions,

ez, y) = —¢(z,y) +0.5 max P(z,y),
(2,y)€[0,1]2

with

= o (U,

=500 training data, 300 validation data, 300 test data.

Examples of considered geometries and corresponding @

‘ : : )(
| ]
T )

X Gaussian centers R, V'

Bl 04 00 04 nn —1‘0 05 00 05 10 13



(p-FEM-FNO : COMPLEX SHAPES

Uref Ex(Urer, Usta) = 1.599 X 1073 Ex(Urer, Up) = 1.615 X 1073 E;(Uyer, Up) = 2.949 x 1073

17002 _11e01 23e01 35e01 47e0l 7.0e08 38604 7604 11e-03 1503 32008 47e.04 0.4e-04  14e-03 19e03 48008 56004 1le03 17e03 2203
[ [ [ [

0= Y oFEM

x 1 L Std-FEM
~ ¥ = A +  Std-FEM-FNO
= x 5 X g-FEM-FNO
510t - £
£ b
5] N
) = |
= @ |
3 Z |
2 = / W
k] 2 v
] o
o \

1079+
3 Ill"t
o o .
&-FEM Standard FEM ~ o-FEM-FNO  Std-FEM-FNO Computation time (s)

Outputs and errors of the methods.



(p-FEM-FNO : NON-LINEAR ELASTICITY

—divP(u)=0,inQ, u=wup,onl'h, u=0,onlY}, P(u)-n:O,onFN.J

a

T

Training:

» New operator to approximate :
gT ] R’nzxnyXZ N RnIXnyx2
(on,gny) = un = (Una, Uny)-
> Loss function: £ = | - |1,q,

» 200 training data, 300 validation data, 300 test data.
Random parameters : imposed displacement wp and centers and radii of the holes.

’




278020 _1.490% = ©d1 790001 141020 o180
[

Relative L? error

(p-FEM-FNO : THE RESULTS

Uref Lo(Uregugg) =1.471 x 1073 Lo (ur =1.877 x 1073 L5 (Urep, ug) = 1.856 X 1072

o 93 365003 173020 3fte = b2 135002

2 2756 =
[ [ [

Outputs of Standard-FEM, -FEM and -FEM-FNO compared to the reference solution.

Y oFEM ~ Geo-FNO

X

-

L Std-FEM X o-FEM-FNO
k +  Std-FEM-FNO
1072- - !

Relative L? error

bacx

T ! 1
107~ : 10! 10"

: . ) . . —
FEM Std FEM  -FEM-FNO Std-FEM-FNO  Geo-FNO Computation time (s)

Errors of the methods.




@ Few evolutions
Another approach : the p-FD method
©-FEM-M : o-FEM and the Multigrid approach
©-FEM-M-FNO



THE (o-FD APPROACH

Extension of the p-FEM dual scheme to finite difference.

Advantages:
» faster and easier to implement than ¢-FEM,
> well conditioned compared to the Shortley-Weller approach!

Considerthe casen = 2

Qn ={za €0 :za €Q
Of Ta+4d € Q7 d € {(170)7 (07 1)}}7
O = {20 € O : 20 €Q}.

1. G. H.Shortley and R. Weller. The numerical solution of Laplace’s equation. 1938.



THE (o-FD APPROACH a

Considerthecasen = 2

Qn ={za €O : To € Qorzarq € Q, d € {(1,0),(0,1)}},
Q' = {a € Op 1 20 €O}

The schemeis given by : Find uj, = (ua)a:eqa ey, St

(—Arun,vn) + bn(un,vn) + jr(un,vr) = Z Z Fava(vn),

@5y eQi}’zt deD
with

—Uq—d + 2Ua — U
(—=Apup,vp) = Z Z a—d = a+dva7

a:xaeﬂfh"‘ deD

Y 1
bh(uh,'l)h) = ﬁ Z 2_'_72(900&+dua = (pauo&+d)(§0a+dva _ @ava+d)7
(e Yo T Patd

_ — 2047 — _ 2047
n(un,vn) = o Z Uy d+hu Ug+d % Vo d+hv Ua-&-d.

(a,d)eJ



Theorem (Duprez, Lleras, Lozinski, Vigon, Vuillemot, 2025.)

Under some assumptions on the domain ( ~ should be smooth), assuming that
u € C*(), and denoting by U = (u(xa))a:heﬂiﬂt, one has

U = unllno + |U = tnlln.co + U = unlni+ < CA*?|Jullcae).-

—— -FEM —— sw

—=— Std FEM —— @-FD

—— FEM —— sw
—=— StdFEM —— &FD

L? relative error
L™ relative error

10
102 10

h h

2D test case. Relative L2 error (left) and L error (right), where SW stands for the
Shortley-Weller approach.



©-FEM-M : THE IDEA

We want to reduce the computationnal cost of o-FEM preserving its accuracy.

Fast mesh generation
Coarse resolution — < Fast system resolution
Good approximation of the solution
No mesh to generate (only refine)
-+ Fine resolution with initial guess — ¢ Interpolate coarse solution

Iterative solver with good initialization




(p-FEM-M : THE PIPELINE

—V - (q(w)Vu) = f, inQ (adisk) ,u =0, onT. J

4}

Coarse resolution

— | Direct solver |— .

c
Wy,

Fine resolution

Iterative solver




(p-FEM-M : NUMERICAL RESULTS

1073 2
P o FEM
I —s— Standard FEM
) +-FEM Multigrid

—e— -FEM
—=— Standard FEM
—=<— p-FEM Multigrid

10°

5 - -FEM Multigrid 2 ~ -FEM Multigrid 2
5 S 0ts
nﬂ:' 10 7, é E
100 =
02 Tt DT e T e g
h L? Relative error
2D test case.
10
—e— o-FEM 10 —e— o-FEM

- —=— Standard FEM ] —=— Standard FEM

. —<— o-FEM Multigrid ] —<— ¢-FEM Multigrid
5 —
> E g :
ER s
3 -
o o & o
5

10~

1002

2x10°2 3x1072 4x 1072 6x107? 10t 0 102
h L? Relative error

3D test case.



@-FEM-FNO + -FEM-M = o-FEM-M-FNO ‘ }

—Au=f,inQ,u=g,onT. J

Coarse resolution

+(-FEM-FNO G, .

Fine resolution

Ly

\
Iterative solver '

7

F
wy,




NUMERICAL RESULTS : POISSON-DIRICHLET 3D

Test case

We want to solve
—Au=f,inQ,u=g,onT.

We consider domains defined by

- 22 y? 52
— (— | | — [ R I
cp(a:,y,z) - ( 1) ( 1 + exp ( 2[2 X 2112/,]' 212 ) ) ?

with (;, 95, 25)" = Ra(6:) Ry(6y) Re(82) (& — oy y — pry, 2 — )"

X X

00003 12603 65003  1de02 22002  -48e02 24002 55004  25e02  49e02 12002 7.8¢:03 38003  23e.04  4.3e03

Examples of considered situations.



NUMERICAL RESULTS

FNO training

a

» Generate 250 data (200 training + 50 validation), with 20 x 20 x 20 grids.
» Train ¢-FEM-FNO for 200 epochs.

T+ pFEM

- X 6x 10 /
< ¢-FEM-M-FNO
s 5 —
T 7
s g <
= E
] S 310
T XD
. +  -FEM
2x107 - S-FEM-M
~« -FEM-M-FNO
e ' ' o S e et
Cpu time (s) Cpu time (s)

Comparison on 6 test cases : average L2 relative error. Left : 802 grids. Right : 160> grids.



® Conclusion



CONCLUSION

» -FEM s a powerful tool capable of solving many problems and easy to
understand.

» The method offers many evolutions : can be adapted to finite difference,
combined to neural networks, to multigrid approach, etc.
» In particular, we proposed p-FEM-FNO :

® Combination that bypasses the main limitations of FNOs,

® Real-time: /100 times faster than FEM solvers,

® =~ 5times faster and more precise than Geo-FNO on test case 1.
® Adapted to non-linear elastic materials.

» Its combination with ¢-FEM-M is very promising.

Perspectives :

» Explore the theoretical aspects of o-FEM mixed bcs and elasticity.

» Adapt p-FEM-FNO and ¢-FEM-M-FNO to Mixed Dirichlet-Neumann boundary
conditions, Time-Dependant PDE's, ...

» 3D problems: validation on organ geometries and realistic test cases.

A\




THEEND....

Thank you for your attention!

4}
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0@ Annexe1: p-FEM



A1.1—NEUMANN PART }
L)

How to impose Neumann boundary conditions?

» Introduce y such that

y=—Vuon QZN .
» Allows to rewrite (on QI;N andI'n):
—Au=f =divy=f, Vu-n=0=y-n=0.
> Usingthatn = V/|V| gives,

\Y
y-n=0 :y-ﬁzo

» Introduce py such that
y-Vo+pnp=0.
» This can finally be sum upin:
y+Vu=0, inQI;N,
yVo+pnvp =0, ianN.

Back to the firstslide J Back to the scheme

v




A1.1—FEM SPACES }
/.

The variables are discretized using the following spaces :
Ph,D € ngk)(Ql;:D) = {Qh : QED —R:gnr € Pk(T) VT € ThFD s
on € ZP (@) = {an 1 QY 5 R 2yp € PRI VT € T
Py € QP V@Y = {qh QPN SR gy € PMHT) VT € T,fN} .
We introduce the FE space :
Wi = VI x QI (Q4P) x 2 (@) x QP (2N) .

Back to the firstslide ] Back to the scheme



A1.2 — A SECOND (p-FEM SCHEME TO TREAT MIXED BCS }

Let p1 and p, defined on Q} ¥ and consider
@(p1,p2) = p1+¢(g = Vp1- Vo +p2p) inQN.

Ot .
Henceu(giln’m) =gonly,andu =p1 + ¢(g — Vp1 - Ve + p2p) withp: = u

and p2 = p. The schemeis given by : find (un, pr, D, Ph,1,Dn,2) € W}(Lk) st
~ 1 ~ -
Vup-Von— Vup -nvp,— Vur nvn+v55 (un—n)(VA—Tn)
Q, N anPusal h R

+07N > /F [Van - n][Von - n] +v / (div(Van) + fr)div(Von)

FeFl @
1 1
+onh Z /[Vuh'n][vvh'n]-f—%/r (uh—Etphph,D—uD)(’Uh—Eth(Jh,D)
FerNe F G2
+oph Z /[Vuh~n][Vvh~n]+'th2/F (Auh+fh)Avh = th}H
Ferp’F 2,7 e
h

YV (Vh, qh, Dy qh,1,4h,2) € W,Ek) .



A1.3 —THE (o-FEM SCHEME FOR LINEAR ELASTICITY }

Back to the recipe
LY ) st

Findun € Vi, pp p € Qr (7). y, € Z1(2,V) andp, v € Q

/ o(uy) : Vo, — / o(up)n - vy —1—/ YpM - Un
Q, 89, \02 N 9. N

[ et o) s (zn + o(w1)
h
1 1
YpVor + =Py vPh | - | ZeVor + —q;, nPh
T'n h h

1 1
@hph,D) (vn — ESOh‘Ih,D) + Gr(un,vn)

N .
the /QED (wn =7
+ 77 (un, vn) + BN (g, 20) =

f-on

Qp

1
A [Verl(zn - Vior + th,wh)

)
t e

1 g
g, _ _ _ P
/QE uj - (vn hSOth,D) B2 /QE
+ T3P (wn) + TN ()
Vop € Vi, q, p € Qﬁ(QZD):zh € Zh(Qlf:N)7‘Ih,N € Q:_I(QEN)-




A1.4 —THE -FEM SCHEME FOR NON-LINEAR ELASTICITY }

FmduhGVh:PhNGQ(k 1)( M), yn € Zn(9, )EtPhDGQ(k)( P)st.

P(uy) : Voy +/ L Ypm- v —/ - Vupn - vp — Fron
Qp, o, N aap\o, N Qp,
1 1
+ D /F (un — 7, PPh,p Un,p)(Vh — Eéﬁth,D)
@, 2
+ oph? > (div P(un) + f),) div(Du (P)(un)vn)

TeT, DuT, Int

90 [ o @+ P@)) s (2 o+ Du(P)wn)on)
Qh
1 1
+ ﬁ / UnVeen + 5 Pnnen +gIVerl) - (2aVeon + 5 a5, non)
h

+ Ydiv /FN (divy, + f5) - div zn, + Gh (un,vn) =0,
Q

h

vvhevhatheQ(k 1)( . zhEZh(Q )7Qh,D€Q§1k)(QI;:D)-

Back to the test case
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@ Annexe 2:FNO



A2.1—STANDARDIZATION OPERATORS }

» Standardization (channel by channel) :

_ [ C — mean(C"™")
et = (S )

where the mean and standard-deviation are computed only on 2, since all the
values are 0 outside y,.

» Unstandardization :

NN Y) =Y x std(Y"™") + mean(Y"™") .



A2.2 —WHAT CHOICE FOR THE LOSS L?

» First derivatives : finite differences.
» Need to reduce the computational domain:

Back to the test case



A2.3—THE LOSS FUNCTIONS ‘ a

Test cases1and 2

Ndata
L (Utrue; U@) = N (go(utrﬁue; ug) + & (u;nr‘ue§ Ug)) s
data n=0
where
gO(UtTﬁue; ug) = ”utﬁue - us”%,s@ )
and
Sl(u'gue; Ug) = ||V2U3ue - VZUZLH?LSIL + ||vzu3ue - VZUQH(%,S{L .

Ndata
1
L (Uirue; Up) = 2 E (51 (u3ue,m§ 'Ufg,a:) + &1 (u:;ue,y; Ug,y)) ,
2 n=0

where

h h h h
gl(utﬁue,-;u’g,-) = ”qu;nr‘ue,- - vxu;”?},sf + ||vyu3ue,- - vyu&”g,sf .
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® Annexe3: -FD



A3—-FD2

Findup, = (uij)ij s.t. dh(uh,vh) = lh(’Uh),With

an(un,vn) = (—Anun, vn) + b (un, v) + jn(un, va),

where
® ®
7 _q Yli=1,5)=(i+1,5) % Y(i=1,9)=(i+1,9)
bh(uhﬂ)h)— YD) 2 2 2 2 2 2
2h 7 4‘Pi+1,j9"i—1,j T 0P, T PP
» ®
+3 Ui, —1) = (irj+1) % Y(ii—1)—(6,5+1)
)
Py 49012,j+15012,j71 + @?j@?,jfl + wfj@g,j+1
U’((pi—l,j)—(iJrl,j) = 20 41Pi—1Ui — PiPi—1Uit1 — PiPit1Ui—1,
with u? andv?, defined similarly, and

(3,5 =1)—(4,5+1) (4,5—=1)—=(4,5+1)

3 —Ui—1,5 + 3Uij — 3Uit1,5 + Wit j
Jh(uh,vh):(r(E L,j 3 . +1,5 42,5

4,5

o ZVi=1y + 3Vij — Bvit1; F vita,
h

4 respinj).




© Annexe 4 : From image to ¢



A4 —HoOW TO CONSTRUCT ¢




A4 —HOW TO CONSTRUCT ¢

» Firstidea:signed distance.

® Pros:fastand easy
® Cons: Non smooth function, non smooth boundary, in practice no analytical
expression

» Second idea : product of Gaussian functions

® Pros:smooth expression, smooth boundary, analytical expression, easy to derivate
® Cons: notso easy to get, available only for smooth geometries

n s x5 y2'
‘p(xvy):(fl) H(71+exp(7212j_7212]_)>’
x,] Y]

J

with

z; = cos(0;)(z — xo0,5) — sin(0;)(y — yo,;) ,
y;j = sin(8;)(x — @o,5) + cos(0;)(y — Yo,5) -



A4 —HOW TO CONSTRUCT ¢ ‘ a

We minimize the following functionnal :

F(p) = afi(e) + Bf2(0) +7f3(p) +fa(e),

where :
1 02 2 0? , 02 2
= = 2 —~_
o) = = > <8$2w($,y) + 2525, P @V’ + 5ae@y)’ )
(z,y)€B
— Function enery

fale) = Z <p(ac,y)2, — values at the inside polygon nodes

(z,y)€EB;
f3(p) = Z o(z,y)?, — values at the outside polygon nodes

(z,y)EBe
falp) = L E 1- 9 (z )2—+-2 (z,y)? ’ — Eikonal equation
4(p _nzny o axso Y 8y30 Y 0 q



A4 —NUMERICAL RESULTS

| Reference | Nanomesh | Signeddistance | Gaussian

Min 0.0 2.3x107° 4.5x107° 2.0x107°

Avg | 8.0x 107" | 29x 107* 1.2x 1073 1.2x107°

Max | 9.9x 107" | 7.7x107° | 43x107% | 41x107°

Boundary reconstruction errors (|¢ez (z, y)|).

-FEM direct (blue) and dual (green) :
» exact expression of o (plain lines) ;
» signed distance (dashed lines);

» Caussian product (dotted);

Standard-FEM (red) :
» exact expression of o (plain lines) ;
» signed distance (dashed lines) ;
» Nanomesh (dotted);

H' Relative error

102

L? Relative error

—e— Direct ¢-FEM
—=— Standard FEM
—=<— Dual ¢y-FEM

—e— Direct ¢-FEM
—=— Standard FEM
—=— Dual p-FEM -
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