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1Motivation

Objectives
Develop real-time, patient specific digital twins for computer-aided surgical
interventions.

I Simulation of the deformations of organs : PDEs−→ FEMs,
I Complex geometries−→Unfitted FEMs,
I Real-time constructions−→Machine learning techniques.



2Very short story of FEMs

(a) Standard FEM (Clough 60s).

(b) XFEM (Moes and al., 2006)
→ Non-classical shape
functions,
CutFEM (Burman, Hansbo,
2010-2014)
→ cut cells and partial integrals.

(c) Shifted Boundary method
(Main, Scovazzi, 2017)
→ Taylor development near the
boundary.

(d)ϕ-FEM (Duprez and
Lozinski, 2020)
→ Level-set function

Problems on complex shapes−→ unfitted FEMs
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3The idea of ϕ-FEM

Level-set function

Ω = {ϕ < 0} and Γ = {ϕ = 0} .

Spaces
I Th :ϕ-FEM mesh,
I T Γ

h : cells of Th cut by the
boundary (purple triangles),

I FΓ
h : internal facets of T Γ

h .

Example with ϕ(x, y) = −1 + x2 + y2.



4Standard FEM VS ϕ-FEM

Example (Poisson-Dirichlet equation)

Standard FEM

Find u s.t.

{
−∆u = f , in Ω ,

u = g , on Γ .

ϕ-FEM

Find w s.t.

{
−∆u = f , in Ωh,

u = ϕw + g , in Ωh.



5ϕ-FEM

Example (Poisson-Dirichlet equation)

−∆(ϕw + g) = f in Ωh .

ϕ-FEM scheme (Duprez, Lozinski. 2020.)
Findwh such that for all vh,∫

Ωh

∇(ϕhwh + gh) · ∇(ϕhvh)

−
∫
∂Ωh

∂

∂n
(ϕhwh + gh)ϕhvh

+ stabs =

∫
Ωh

fhϕhvh − stabs .



6ϕ-FEM : Stabilization terms

Example (Poisson-Dirichlet equation)

−∆(ϕw + g) = f in Ωh .

∫
Ωh

∇(ϕhwh + gh) · ∇(ϕhvh)−
∫
∂Ωh

∂

∂n
(ϕhwh + gh)ϕhvh

+ σh
∑

F ∈ FΓ
h

∫
F

[
∂

∂n
(ϕhwh + gh)

] [
∂

∂n
(ϕhvh)

]
︸ ︷︷ ︸

(Stab1) : jump over the facets, Ghost penalty 1

+ σh2
∑

T ∈ T Γ
h

∫
T

(∆(ϕhwh + gh) + fh)∆(ϕhwh)

︸ ︷︷ ︸
(Stab2) : least square imposition of the governing equation

=

∫
Ωh

fhϕhvh .

1. E. Burman, Ghost penalty, 2010.
1. E. Burman, Ghost penalty, 2010.
1. E. Burman, Ghost penalty, 2010.
1. E. Burman, Ghost penalty, 2010.
1. E. Burman, Ghost penalty, 2010.
1. E. Burman, Ghost penalty, 2010.
1. E. Burman, Ghost penalty, 2010.
1. E. Burman, Ghost penalty, 2010.



7The ϕ-FEM dual variant

Main idea
Use the idea of the previous method (direct variant) only in the "boundary cells"
(purple cells) :

uh = ϕhph + gh , in ΩΓ
h .

The scheme is given by : find
(uh, ph) ∈ Vh ×Qh such that∫

Ωh

∇uh · ∇vh −
∫
∂Ωh

∂uh
∂n

vh

+

Penalization︷ ︸︸ ︷
γ

h2

∫
ΩΓ
h

(uh − 1

h
ϕhph − gh)(vh − 1

h
ϕhqh)

+Glhsh (uh, vh) =Grhsh (vh)︸ ︷︷ ︸
Stabilization

+

∫
Ωh

fvh , ∀vh ∈ Vh, qh ∈ Qh .

Th \ T Γ
h T Γ

h Γ
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8Theoretical results

Theorem (Duprez, Lleras, Lozinski, Vuillemot. In preparation.)
The solutionuh of the given scheme satisfies

|u− uh|1,Ωh 6 Chk‖f‖k,Ωh and ‖u− uh‖0,Ωh 6 Chk+1/2‖f‖k,Ωh .

Sketch of proof.
Based on the coercivity of the bilinear form,

ah(uh, ph; vh, qh) =

∫
Ωh

∇uh · ∇vh−
∫
∂Ωh

∂uh
∂n

vh

+
γ

h2

∫
ΩΓ
h

(uh − 1

h
ϕhph − gh)(vh − 1

h
ϕhqh) +Glhsh (uh, vh) .

Main difficulty : absorb the boundary term, which is done using an integration by
parts on Ωh \ Ω and the stabilization terms.
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9Numerical results

Theorem (Duprez, Lleras, Lozinski, Vuillemot. In preparation.)
The solutionuh of the given scheme satisfies

|u− uh|1,Ωh 6 Chk‖f‖k,Ωh and ‖u− uh‖0,Ωh 6 Chk+1/2‖f‖k,Ωh .

Test case : Poisson on disk

ϕ1(x, y) = −0.31252 + (x− 0.5)2 + (y − 0.5)2 , Dashed lines

ϕ2(x, y) = −0.3125 +
√

(x− 0.5)2 + (y − 0.5)2 . Plain lines
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10Mixed Dirichlet / Neumann boundary conditions.

The problem
We want to solve 

−∆u = f , in Ω ,

u = 0 , on ΓD ,

∇u · n = 0 , on ΓN ,

Ω

ΓN

ΓD
Ω

ΓD

ΓN

Examples of considered situations.

Tools to do it :ϕ-FEM Neumann a +ϕ-FEM dual variant.

a. A newφ-FEM approach for problems with natural boundary conditions. Duprez, Lleras, Lozinski. 2023.



11Construction of the set of cells and facets

Introduceψ such that

ΓD = Γ ∩ {ψ < 0} and ΓN = Γ ∩ {ψ > 0} .

Hence, we can define

T ΓD
h := {T ∈ T Γ

h : ψh 6 0 onT} and T ΓN
h := {T ∈ T Γ

h : ψh > 0 onT} ,

Th
Γ

T ΓD
h

Interface

T ΓN
h T ΓInt

h Th
FNS

h

Γ

T ΓD
h

FΓD
h

Interface

T ΓN
h

FN
h

T ΓInt
h

FΓInt
h



12Final setup

We get 3 new variables and 3 additional equations :

u = ϕpD , in ΩΓD
h ,

y +∇u = 0 , in ΩΓN
h ,

y∇ϕ+ pNϕ = 0 , in ΩΓN
h .

(using thatn = ∇ϕ/|∇ϕ|)

Th
Γ

T ΓD
h

Interface

T ΓN
h T ΓInt

h

Theϕ-FEM scheme is given by : find (uh, ph,D, yh, ph,N ) ∈W (k)
h such that for all

(vh, qh,D, zh, qh,N ) ∈W (k)
h ,∫

Ωh

∇uh · ∇vh −
∫
∂Ωh\∂Ωh,N

∂uh
∂n

vh + aD(uh, ph,D; vh, qh,D)

+ aN (uh, yh, ph,N ; vh, zh, qh,N ) =

∫
Ωh

fvh + lD(vh) + lN (zh) .
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13The scheme : Dirichlet part

We want to impose by penalization :

u = ϕpD , in ΩΓD
h .

Th
Γ

T ΓD
h

Interface

T ΓN
h T ΓInt

h

aD(uh, ph,D; vh, qh,D) =

Penalization︷ ︸︸ ︷
γ

h2

∫
Ω

ΓD
h

(uh − 1

h
ϕhph,D)(vh − 1

h
ϕhqh,D)

+σDh
∑

F∈FΓD
h
∪FΓInt

h

∫
F

[
∂uh
∂n

] [
∂vh
∂n

]

+ σDh
2

∫
Ω

ΓD
h
∪Ω

ΓInt
h

∆uh∆vh,

lD(vh) = − σDh2

∫
Ω

ΓD
h
∪Ω

ΓInt
h

f∆vh .

Stabilization



14The scheme : Neumann part

Th
Γ

T ΓD
h

Interface

T ΓN
h T ΓInt

h

We want to impose by penalization :

y +∇u = 0 , in ΩΓN
h ,

y∇ϕ+ pNϕ = 0 , in ΩΓN
h .

aN (uh, yh, ph,N ;vh, zh, qh,N ) =

Boundary term︷ ︸︸ ︷∫
∂Ωh,N

yh.nvh

+γu

∫
Ω

ΓN
h

(yh +∇uh)(zh +∇vh)

+
γp
h2

∫
Ω

ΓN
h

(yh · ∇ϕh+
1

h
ph,Nϕh)(zh · ∇ϕh +

1

h
qh,Nϕh)

+σNh
∑

F∈FNS
h

∫
F

[
∂uh
∂n

] [
∂vh
∂n

]
+ γdiv

∫
Ω

ΓN
h

div yh div zh ,

lN (zh) = γdiv

∫
Ω

ΓN
h

f div zh .

Penalization

Stabilization

Gh(uh, vh) := σDh
∑

E∈FΓD
h

∫
E

[
∂uh
∂n

] [
∂vh
∂n

]
+σNh

∑
E∈FNS

h

∫
E

[
∂uh
∂n

] [
∂vh
∂n

]
.



15Numerical results : the simple case.

We consider f = −1, the domain given by :
ϕ1(x, y) = −0.392 + (x− 0.5)2 + (y − 0.5)2 ,

ϕ2(x, y) = −0.142 + (x− 0.5)2 + (y − 0.5)2 ,

ϕ(x, y) = ϕ1(x, y)× ϕ2(x, y) .

and to detect the change of boundary :

ψ(x, y) = 0.252− (x− 0.5)2− (y− 0.5)2 .

Ω

ΓN

ΓD
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Left : L2 relative errors. Right : H1 relative errors.



16Numerical results : a complex case with singularities.

We consider f = −1, the domain given by :

ϕ(x, y) = −0.312 +(x−0.5)2 +(y−0.5)2 .

and to detect the change of boundary :

ψ(x, y) = x− 0.5 .

Ω
ΓD

ΓN
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Left : L2 relative errors. Right : H1 relative errors.



17Linear elasticity

Model problem 
divσ(u) + f = 0 , in Ω,

u = ug , on ΓD,

σ(u) · n = g , on ΓN .

σ(u) = 2µ ε(u) + λ(divu) I Constraints tensor

ε(u) = 1
2

(
∇u+ (∇u)T

)
Deformation tensor

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
Lamé parameters

How to construct aϕ-FEM scheme to solve this?
Follow the same recipe than before.



18Numerical results

−divσ(u) = (0,−ρg) , in Ω , u = 0 , on ΓD , σ(u) · n = 0 , on ΓN .
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19Non-linear elasticity

Model problem :≈ the same... except non-linear constraints tensor.


−divP (u) = f , in Ω ,

u = uD , on ΓD ,

P (u) · n = g , on ΓN ,

with compressible Neo-Hookean material :

P =
∂W

∂F
, whereW =

µ

2
(I1 − 3− 2 ln(J)) +

λ

2
ln(J)2,

withF = I +∇u,C = FT · F , I1 = tr(C), and J = detF .

ϕ-FEM scheme :≈ the same recipe...
P non-linear =⇒ Stabilization terms non-linear inv=⇒ need to replaceP (v) with
Du(P )(u)v, the derivative ofP evaluated inu, in the directionv.



20Test case : rounded beam
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21Heat equation (I)

Consider the following problem
∂tu−∆u = f , in Ω× (0, T ),

u = 0 , on Γ× (0, T ),

u|t=0 = u0 , in Ω .

Time discretization
Implicit Euler scheme : givenun = ϕwn, findun+1 = ϕwn+1 such that

ϕwn+1 − ϕwn
∆t

−∆(ϕwn+1) = fn+1 .
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22Heat equation (II)

Considered problem


∂tu−∆u = f , in Ω× (0, T ),

u = 0 , on Γ× (0, T ),

u|t=0 = u0 , in Ω .

Time discretization
ϕwn+1 − ϕwn

∆t
−∆(ϕwn+1) = fn+1 .

The proposed scheme∫
Ωh

ϕhw
n+1
h

∆t
ϕhvh +

∫
Ωh

∇(ϕhw
n+1
h ) · ∇(ϕhvh)

−
∫
∂Ωh

∂

∂n
(ϕhw

n+1
h )ϕhvh + stabs =

∫
Ωh

(
unh
∆t

+ fn+1

)
ϕhvh − stabs .



23Heat equation (III)

Theorem (Duprez, Lleras, Lozinski, Vuillemot, 2023)

‖u− uh‖l2(H1) 6 C‖u0 − u0
h‖L2(Ωh)

+ C(hk + ∆t)
(
‖u‖H2(0,T ;Hk−1(Ω)) + ‖f‖H1(0,T ;Hk−1(Ωh))

)
,

‖u− uh‖l∞(L2) 6 C‖u0 − u0
h‖L2(Ωh)

+ C(hk+ 1
2 + ∆t)

(
‖u‖H2(0,T ;Hk−1(Ω)) + ‖f‖H1(0,T ;Hk−1(Ωh))

)
.

10−1

h
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‖u
re
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−

u
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(H
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)
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f
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(H
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Left : l2(H1) relative errors. Right : l∞(L2) relative errors.
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24Our framework for the Poisson equation

In the context of real-time simulations, we need
quasi-instantaneous results.

I ϕ-FEM : precise but slow−→Not real-time
I Neural Networks−→Real time
I ϕ-FEM + Neural Networks−→ Precise and real-time method?

Force

Geometry

Boundary conditions

Gθ

Neural Network Solution



24Our framework for the Poisson equation

In the context of real-time simulations, we need
quasi-instantaneous results.

I ϕ-FEM : precise but slow−→Not real-time
I Neural Networks−→Real time
I ϕ-FEM + Neural Networks−→ Precise and real-time method?

The idea : construct an operatorGθ

fh

ϕh

gh

wθ

Gθ

× +
ϕhwθ

1Ωh

uθ

ϕhwθ + gh

× uθ × 1Ωh

uθ|Ωh



25ϕ-FEM-FNO

How to combineϕ-FEM and neural networks to obtain fast and precise results?

−→ the Fourier Neural Operator.a

a. Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar. Fourier
neural operator for parametric partial differential equations, 2021

Why choose the FNO ?
I Neural operator : learns a mapping, not a solution,
I Uses FFT−→ requires Cartesian grid, asϕ-FEM does,
I Can be implemented easily,
I Almost no need to change the underlying architecture when changing the

governing PDE.



26What is the FNO ? (I)

Parametric application :

Gθ : Rnx×ny×3 N−→ Rnx×ny×3 Pθ−−→ Rnx×ny×nd
H1
θ−−→ Rnx×ny×nd

H2
θ−−→

. . .
H4
θ−−→ Rnx×ny×nd Qθ−−→ Rnx×ny×1 N−1

−−−→ Rnx×ny×1 .

I In and out dimensions :X = (fh, ϕh, gh)→ wh, with fh,ϕh, gh andwh
images of shape (nx, ny),

I N andN−1 : standardization and unstandardization (channel by channel),
I Pθ andQθ « embedding and projection »,

Pθ(X)ijk =

3∑
k′=1

W
Pθ
kk′Xijk′ +B

Pθ
k ∈ Rnd ,

−→ from original dimension 3 to « hidden dimension »,nd >> 3.

Qθ(X)ij =

[ nQ∑
k=1

W
Qθ,2
1k σ

(
nd∑
k′=1

W
Qθ,1
kk′ Xijk′ +B

Qθ,1
k

)]
+BQθ,2 ∈ R

−→ from « hidden dimension »nd to final dimension 1.



27What is the FNO ? (II)

Parametric application :

Gθ : Rnx×ny×3 N−→ Rnx×ny×3 Pθ−−→ Rnx×ny×nd
H1
θ−−→ Rnx×ny×nd

H2
θ−−→

. . .
H4
θ−−→ Rnx×ny×nd Qθ−−→ Rnx×ny×1 N−1

−−−→ Rnx×ny×1 .

Each layerH`θ is defined by :
H`θ = σ

(
C`θ(X) + B`θ(X)

)

3 2 1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 GELU(x)

y
F−1

(
W C

`
θF(X)

)
withF the real-FFT and
F−1 its inverse.

The coefficients ofW C
`
θ

are complex trainable
parameters.

y
B`θ(X)ijk

=

nd∑
k′=1

W
B`θ
kk′Xijk′+B

B`θ
k

The coefficients ofWB
`
θ

andBB
`
θ are real

trainable parameters.



28ϕ-FEM-FNO : random ellipses

First test case

−∆u = f , in Ω, u = g , on Γ ,

I Ω : random rotated ellipse,
I f : random gaussian force with variable amplitude

f(x, y) = A exp

(
− (x− µ0)2

2σ2
x

− (y − µ1)2

2σ2
y

)
,

I g(α,β)(x, y) = α
(
(x− 0.5)2 − (y − 0.5)2) cos (βyπ) .

Dataset : 1500 training data, 300 validation data, 300 test data.
Random parameters : ellipses parameters and (A,µ0, µ1, σx, σy, α, β).



29ϕ-FEM-FNO : random ellipses

We try to approximate the operator :

G† : Rnx×ny×3 → Rnx×ny×1

(fh, ϕh, gh) 7→ wh .

Convergence of the loss function≈ ‖ · ‖1,Ωh
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30ϕ-FEM-FNO VS other techniques

We compare the following techniques :
I Standard-FEM,ϕ-FEM andϕ-FEM-FNO.
I ϕ-FEM-FNO 2 :ϕ-FEM-FNO predicting directlyuθ :

Gθ : Rnx×ny×3 → Rnx×ny×1 ,

(fh, ϕh, gh) 7→ uθ .

I ϕ-FEM-UNET :ϕ-FEM-FNO, but using a U-NET.
I Standard-FEM-FNO : FNO trained with standard P1 FEM solutions, extrapolated

on Cartesian grids as data.
I Geo-FNO.a

a. Z. Li, D. Huang, B. Liu, A. Anandkumar : Fourier Neural Operator with Learned Deformations for PDEs on
General Geometries. Codes : https://github.com/neuraloperator/Geo-FNO

Using the relativeL2 error :

E2(uref, uθ) :=
‖ΠΩrefuθ − uref‖0,Ωref

‖uref‖0,Ωref

=

√√√√∫Ωref
(ΠΩrefuθ − uref)2 dx∫

Ωref
u2

ref dx
.

https://github.com/neuraloperator/Geo-FNO


31ϕ-FEM-FNO VS other techniques
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32ϕ-FEM-FNO : complex shapes

Second test case

−∆u = f , in Ω, u = g , on Γ ,

where Ω is defined using Gaussian functions,

ϕ(x, y) = −ψ(x, y) + 0.5 max
(x,y)∈[0,1]2

ψ(x, y) ,

with

ψ(x, y) =

3∑
k=1

exp

(
− (x− xk)2

2σk
− (y − yk)2

2γk

)
,

=⇒ 500 training data, 300 validation data, 300 test data.
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Examples of considered geometries and corresponding 
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34ϕ-FEM-FNO : non-linear elasticity

− divP (u) = 0 , in Ω , u = uD , on ΓtD , u = 0 , on ΓbD , P (u)·n = 0 , on ΓN .

Γb
D

Γt
D

ΓN

Ω

Training :
I New operator to approximate :

G† : Rnx×ny×2 → Rnx×ny×2

(ϕh, gh,y) 7→ uh = (uh,x, uh,y) .

I Loss function :L ≈ | · |1,Ωh
I 200 training data, 300 validation data, 300 test data.

Random parameters : imposed displacementuD and centers and radii of the holes.



35ϕ-FEM-FNO : the results
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36The ϕ-FD approach

What’s ϕ-FD?
Extension of theϕ-FEM dual scheme to finite difference.

Advantages :
I faster and easier to implement thanϕ-FEM,
I well conditioned compared to the Shortley-Weller approach.1

Consider the case n = 2

Ωh = {xα ∈ Oh : xα ∈ Ω

orxα±d ∈ Ω, d ∈ {(1, 0), (0, 1)}} ,
Ωint
h = {xα ∈ Oh : xα ∈ Ω} .

Ωh Ωh Γ

1. G. H. Shortley and R. Weller. The numerical solution of Laplace’s equation. 1938.



37The ϕ-FD approach

Consider the case n = 2

Ωh = {xα ∈ Oh : xα ∈ Ω orxα±d ∈ Ω, d ∈ {(1, 0), (0, 1)}} ,
Ωint
h = {xα ∈ Oh : xα ∈ Ω} .

The scheme is given by : Finduh = (uα)α:xα∈Ωh , s.t.

(−∆huh, vh) + bh(uh, vh) + jh(uh, vh) =
∑

α:xα∈Ωint
h

∑
d∈D

fαvα(vh),

with

(−∆huh, vh) =
∑

α:xα∈Ωint
h

∑
d∈D

−uα−d + 2uα − uα+d

h2
vα,

bh(uh, vh) =
γ

2h2

∑
(α,d)∈B

1

ϕ2
α + ϕ2

α+d

(ϕα+duα − ϕαuα+d)(ϕα+dvα − ϕαvα+d),

jh(uh, vh) = σ
∑

(α,d)∈J

−uα−d + 2uα − uα+d

h
× −vα−d + 2vα − vα+d

h
.



38ϕ-FD : Results

Theorem (Duprez, Lleras, Lozinski, Vigon, Vuillemot, 2025.)
Under some assumptions on the domain (≈ should be smooth), assuming that
u ∈ C4(Ω), and denoting byU = (u(xα))α:xα∈Ωint

h
, one has

‖U − uh‖h,0 + ‖U − uh‖h,∞ + |U − uh|h,1+ 6 Ch3/2‖u‖C4(Ω).
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2D test case. Relative L2 error (left) and L∞ error (right), where SW stands for the
Shortley-Weller approach.



39ϕ-FEM-M : The idea

Motivation
We want to reduce the computationnal cost ofϕ-FEM preserving its accuracy.

Coarse resolution −→


Fast mesh generation
Fast system resolution
Good approximation of the solution

+ Fine resolution with initial guess −→


No mesh to generate (only refine)
Interpolate coarse solution
Iterative solver with good initialization



40ϕ-FEM-M : The pipeline

−∇ · (q(u)∇u) = f , in Ω (a disk) , u = 0 , on Γ .

Coarse resolution

T O
h T 0

h

ϕ ϕh

ICh ϕ

fh
ICh f -1.0e+00 -9.2e-01 -8.4e-01 -7.5e-01 -6.7e-01

  

wC
h

Direct solver

Fine resolution

T 1,O
h

Re
fin
e

T 1
h

ϕ IFh wC
h

= w0
h

ϕh

-4.2e+01 9.9e+01 2.4e+02 3.8e+02 5.2e+02
  

fh

IFh

wF
h

Iterative solver

Init.



41ϕ-FEM-M : Numerical results
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42ϕ-FEM-FNO +ϕ-FEM-M =ϕ-FEM-M-FNO

−∆u = f , in Ω , u = g , on Γ .

Coarse resolution

T O
h

T 0
h

ϕ

ϕh = ϕ(x, y)

gh = g(x, y)

fh = f(x, y)

wC
θ

ϕ-FEM-FNO Gθ

Fine resolution
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h
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ne

T 1
h

ϕ IFh w
C
θ

= w0
h

ϕhfhgh

IFh

wF
h

Iterative solver

Init.



43Numerical results : Poisson-Dirichlet 3D

Test case
We want to solve

−∆u = f , in Ω , u = g , on Γ .

We consider domains defined by

ϕ(x, y, z) = (−1)3
3∏
j=1

(
− 1 + exp

(
− x2

j

2l2x,j
− y2

j

2l2y,j
− z2

j

2l2z,j

))
,

with (xj , yj , zj)
T = Rz(θz)Ry(θy)Rx(θx) (x− µx, y − µy, z − µz)T .
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Examples of considered situations.



44Numerical results

FNO training
I Generate 250 data (200 training + 50 validation), with 20× 20× 20 grids.
I Trainϕ-FEM-FNO for 200 epochs.
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45Conclusion

Results
I ϕ-FEM is a powerful tool capable of solving many problems and easy to

understand.
I The method offers many evolutions : can be adapted to finite difference,

combined to neural networks, to multigrid approach, etc.
I In particular, we proposedϕ-FEM-FNO :

• Combination that bypasses the main limitations of FNOs,
• Real-time :≈ 100 times faster than FEM solvers,
• ≈ 5 times faster and more precise than Geo-FNO on test case 1.
• Adapted to non-linear elastic materials.

I Its combination withϕ-FEM-M is very promising.

Perspectives :
I Explore the theoretical aspects ofϕ-FEM mixed bcs and elasticity.
I Adaptϕ-FEM-FNO andϕ-FEM-M-FNO to Mixed Dirichlet-Neumann boundary

conditions, Time-Dependant PDE’s, . . .
I 3D problems : validation on organ geometries and realistic test cases.



46The end . . .

Thank you for your attention!

Contributions
ϕ-FEM-FNO : a new approach to train a Neural Operator as a fast
PDE solver for variable geometries. M. Duprez, V. Lleras, A.
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ϕ-FEM for the heat equation : optimal convergence on unfitted
meshes in space. M. Duprez, V. Lleras, A. Lozinski, K. Vuillemot.
2023.

ϕ-FEM : an efficient simulation tool using simple meshes for
problems in structure mechanics and heat transfer. S. Cotin, M.
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1A1.1 – Neumann part

How to impose Neumann boundary conditions ?
I Introduce y such that

y = −∇u on ΩΓN
h .

I Allows to rewrite (on ΩΓN
h and ΓN ) :

−∆u = f ⇒ div y = f , ∇u · n = 0⇒ y · n = 0 .

I Using thatn = ∇ϕ/|∇ϕ| gives,

y · n = 0 ⇒ y · ∇ϕ|∇ϕ| = 0 .

I Introduce pN such that
y · ∇ϕ+ pNϕ = 0 .

I This can finally be sum up in :

y +∇u = 0 , in ΩΓN
h ,

y∇ϕ+ pNϕ = 0 , in ΩΓN
h .

Back to the first slide Back to the scheme



2A1.1 – FEM spaces

The variables are discretized using the following spaces :

ph,D ∈ Q(k)
h (ΩΓD

h ) :=
{
qh : ΩΓD

h → R : qh|T ∈ Pk(T ) ∀T ∈ T ΓD
h

}
,

zh ∈ Z(k)
h (ΩΓN

h ) :=
{
zh : ΩΓN

h → Rd : zh|T ∈ Pk(T )d ∀T ∈ T ΓN
h

}
ph,N ∈ Q(k−1)

h (ΩΓN
h ) :=

{
qh : ΩΓN

h → R : qh|T ∈ Pk−1(T ) ∀T ∈ T ΓN
h

}
.

We introduce the FE space :

W
(k)
h := V

(k)
h ×Q(k)

h (ΩΓD
h )× Z(k)

h (ΩΓN
h )×Q(k−1)

h (ΩΓN
h ) .

Back to the first slide Back to the scheme



3A1.2 – A second ϕ-FEM scheme to treat mixed bcs

Let p1 and p2 defined on ΩΓN
h and consider Back to the results

ũ(p1, p2) = p1 + ϕ(g −∇p1 · ∇ϕ+ p2ϕ) in ΩΓN
h .

Hence ∂ũ(p1, p2)

∂n
= g on ΓN , andu = p1 + ϕ(g −∇p1 · ∇ϕ+ p2ϕ) with p1 = u

and p2 = p. The scheme is given by : find (uh, ph,D, ph,1, ph,2) ∈W (k)
h s.t.∫

Ωh

∇uh·∇vh−
∫
∂ΩN

h

∇ũh·nvh−
∫
∂ΩD

h
∪∂ΩI

h

∇uh·nvh+γ
1

h2

∫
Ω

ΓN
h

(uh−ũh)(vh−ṽh)

+
σN
h

∑
F∈FN

h

∫
F

[∇ũh · n][∇ṽh · n] + γ

∫
Ω

ΓN
h

(div(∇ũh) + fh)div(∇ṽh)

+σNh
∑

F∈FNs
h

∫
F

[∇uh·n][∇vh·n]+
γD
h2

∫
Ω

ΓD
h

(uh− 1

h
ϕhph,D−uD)(vh− 1

h
ϕhqh,D)

+ σDh
∑

F∈FΓD
h

∫
F

[∇uh · n][∇vh · n] + γDh
2

∫
Ω

ΓD
h

(∆uh + fh)∆vh =

∫
Ωh

fhvh ,

∀(vh, qh,D, qh,1, qh,2) ∈W (k)
h .



4A1.3 – The ϕ-FEM scheme for linear elasticity

Back to the recipe

Finduh ∈ V h,ph,D ∈ Qk
h(ΩΓD

h ),yh ∈ Zh(ΩΓN
h ) andph,N ∈ Qk−1

h (ΩΓN
h ) s.t.∫

Ωh

σ(uh) : ∇vh −
∫
∂Ωh\∂Ωh,N

σ(uh)n · vh +

∫
∂Ωh,N

yhn · vh

+ γu

∫
Ω

ΓN
h

(yh + σ(uh)) : (zh + σ(vh))

+
γp
h2

∫
Ω

ΓN
h

(
yh∇ϕh +

1

h
ph,Nϕh

)
·
(
zh∇ϕh +

1

h
qh,Nϕh

)
+

γ

h2

∫
Ω

ΓD
h

(uh − 1

h
ϕhph,D) · (vh − 1

h
ϕhqh,D) +Gh(uh,vh)

+ J lhs,Dh (uh,vh) + J lhs,Nh (yh,zh) =

∫
Ωh

f · vh

+
γ

h2

∫
ΩD
h

ugh · (vh −
1

h
ϕhqh,D)− γp

h2

∫
Ω

ΓN
h

g · |∇ϕh|(zh · ∇ϕh +
1

h
qh,Nϕh)

+ Jrhs,Dh (vh) + Jrhs,Nh (zh)

∀vh ∈ V h, qh,D ∈ Qk
h(ΩΓD

h ),zh ∈ Zh(ΩΓN
h ), qh,N ∈ Qk−1

h (ΩΓN
h ) .



5A1.4 – The ϕ-FEM scheme for non-linear elasticity

Finduh ∈ V k
h,ph,N ∈ Q(k−1)

h (ΩΓN
h ),yh ∈ Zh(ΩΓN

h ) etph,D ∈ Q(k)
h (ΩΓD

h ) s.t.∫
Ωh

P (uh) : ∇vh +

∫
∂Ω

ΓN
h

yhn · vh −
∫
∂Ωh\∂Ω

ΓN
h

∇uhn · vh −
∫

Ωh

fhvh

+ γD

∫
Ω

ΓD
h

(uh − 1

h
ϕhph,D − uh,D)(vh − 1

h
ϕhqh,D)

+ σDh
2

∑
T∈T ΓD

h
∪T ΓInt
h

∫
T

(divP (uh) + fh) div(Du(P )(uh)vh)

+ γu

∫
Ω

ΓN
h

(yh + P (uh)) : (zh +Du(P )(uh)vh)

+
γp
h2

∫
Ω

ΓN
h

(yh∇ϕh +
1

h
ph,Nϕh + g|∇ϕh|) · (zh∇ϕh +

1

h
qh,Nϕh)

+ γdiv

∫
Ω

ΓN
h

(div yh + fh) · div zh +Gh (uh,vh) = 0 ,

∀vh ∈ V k
h, qh,N ∈ Q(k−1)

h (ΩΓN
h ), zh ∈ Zh(ΩΓN

h ), qh,D ∈ Q(k)
h (ΩΓD

h ) .

Back to the test case
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6A2.1 – Standardization operators

I Standardization (channel by channel) :

NC(C) =

(
C −mean(C train)

std(C train)

)
,

where the mean and standard-deviation are computed only on Ωh, since all the
values are 0 outside Ωh.

I Unstandardization :

N−1(Y ) = Y × std(Y train) + mean(Y train) .



7A2.2 – What choice for the lossL?

H1 norm :L2 ≈ ‖ · ‖20,S0
+ | · |21,S1

I First derivatives : finite differences.
I Need to reduce the computational domain :

c
0

0 1
1

Back to the test case



8A2.3 – The loss functions

Test cases 1 and 2

L (Utrue;Uθ) =
1

Ndata

Ndata∑
n=0

(E0(untrue;u
n
θ ) + E1(untrue;u

n
θ )) ,

where

E0(untrue;u
n
θ ) = ‖untrue − unθ ‖20,Sn0 ,

and

E1(untrue;u
n
θ ) = ‖∇hxuntrue −∇hxunθ ‖20,Sn1 + ‖∇hyuntrue −∇hyunθ ‖20,Sn1 .

Test case 3

L (Utrue;Uθ) =
1

Ndata

Ndata∑
n=0

(
E1(untrue,x;unθ,x) + E1(untrue,y;unθ,y)

)
,

where

E1(untrue,·;u
n
θ,·) = ‖∇hxuntrue,· −∇hxunθ,·‖20,Sn1 + ‖∇hyuntrue,· −∇hyunθ,·‖20,Sn1 .
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9A3 – ϕ-FD2

Finduh = (uij)ij s.t. ãh(uh, vh) = lh(vh), with

ãh(uh, vh) = (−∆huh, vh) + b̃h(uh, vh) + j̃h(uh, vh),

where

b̃h(uh, vh) =
γ

2h2

(∑
ij

uϕ(i−1,j)−(i+1,j) × v
ϕ
(i−1,j)−(i+1,j)

4ϕ2
i+1,jϕ

2
i−1,j + ϕ2

ijϕ
2
i−1,j + ϕ2

ijϕ
2
i+1,j

+
∑
ij

uϕ(i,j−1)−(i,j+1) × v
ϕ
(i,j−1)−(i,j+1)

4ϕ2
i,j+1ϕ

2
i,j−1 + ϕ2

ijϕ
2
i,j−1 + ϕ2

ijϕ
2
i,j+1

)
,

uϕ(i−1,j)−(i+1,j) := 2ϕi+1ϕi−1ui − ϕiϕi−1ui+1 − ϕiϕi+1ui−1,

withuϕ(i,j−1)−(i,j+1) and vϕ(i,j−1)−(i,j+1) defined similarly, and

j̃h(uh, vh) = σ

(∑
i,j

−ui−1,j + 3uij − 3ui+1,j + ui+2,j

h

× −vi−1,j + 3vij − 3vi+1,j + vi+2,j

h
+ resp in j

)
.
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10A4 – How to construct ϕ



11A4 – How to construct ϕ

I First idea : signed distance.
• Pros : fast and easy
• Cons : Non smooth function, non smooth boundary, in practice no analytical

expression
I Second idea : product of Gaussian functions

• Pros : smooth expression, smooth boundary, analytical expression, easy to derivate
• Cons : not so easy to get, available only for smooth geometries

ϕ(x, y) = (−1)n
n∏
j

(
− 1 + exp

(
− x2

j

2l2x,j
− y2

j

2l2y,j

))
,

with

xj = cos(θj)(x− x0,j)− sin(θj)(y − y0,j) ,

yj = sin(θj)(x− x0,j) + cos(θj)(y − y0,j) .



12A4 – How to construct ϕ

We minimize the following functionnal :

F (ϕ) = αf1(ϕ) + βf2(ϕ) + γf3(ϕ) + δf4(ϕ) ,

where :

f1(ϕ) =
1

nxny

∑
(x,y)∈B

(
∂2

∂x2
ϕ(x, y)2 + 2

∂2

∂x∂y
ϕ(x, y)2 +

∂2

∂y2
ϕ(x, y)2

)
,

→ Function enery

f2(ϕ) =
∑

(x,y)∈Bi

ϕ(x, y)2 , → values at the inside polygon nodes

f3(ϕ) =
∑

(x,y)∈Be

ϕ(x, y)2 , → values at the outside polygon nodes

f4(ϕ) =
1

nxny

∑
(x,y)∈B

(
1−

(
∂

∂x
ϕ(x, y)2 +

∂

∂y
ϕ(x, y)2

))2

. → Eikonal equation



13A4 – Numerical results

Reference Nanomesh Signed distance Gaussian

Min 0.0 2.3× 10−5 4.5× 10−6 2.0× 10−6

Avg 8.0× 10−16 2.9× 10−3 1.2× 10−3 1.2× 10−3

Max 9.9× 10−15 7.7× 10−3 4.3× 10−3 4.1× 10−3

Boundary reconstruction errors (|ϕex(x, y)|).
Standard-FEM (red) :
I exact expression ofϕ (plain lines) ;
I signed distance (dashed lines) ;
I Nanomesh (dotted) ;

ϕ-FEM direct (blue) and dual (green) :
I exact expression ofϕ (plain lines) ;
I signed distance (dashed lines) ;
I Gaussian product (dotted) ;
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