

A NEW UNFITTED FINITE ELEMENT METHOD: ϕ -FEM

27/09/2023

Killian Vuillemot

Univ Montpellier (IMAG) & Inria (MIMESIS)

- Motivation
- **2** The ϕ -FEM technique
- ${\it 3}$ $\phi\text{-FEM}$ and the heat equation
- **4** ϕ -FEM and Neural networks
- S Conclusion and ongoing works

- Motivation
- **2** The ϕ -FEM technique
- \odot ϕ -FEM and the heat equation
- Φ ϕ -FEM and Neural networks
- Conclusion and ongoing works

MOTIVATION |

Context

 $Construction \ of \ digital \ twins, in \ real-time, for \ surgical \ interventions.$

Tools

- ightharpoonup Simulation of the deformations of organs : PDEs \longrightarrow FEMs,
- ► Complex geometries Unfitted FEMs,
- ► Real-time constructions machine learning techniques.

New method : ϕ -FEM, unfitted method, precise, easy to implement.

- Motivation
- **2** The ϕ -FEM technique
- Φ ϕ -FEM and Neural networks
- Conclusion and ongoing works

$\phi ext{-WHAT}$?

► FEM : Finite Element Method

ϕ -WHAT?

- FFM · Finite Flement Method
- ► Idea : from continuous to discrete,
 - Strong formulation :

Find
$$u\in H^2(\Omega)$$
 s.t : $\,-\,\Delta u=f\,\operatorname{in}\Omega\,,\,u=0\operatorname{on}\partial\Omega$.

 Weak formulation: multiplication by a "test function" + integration by parts,

Find
$$u \in H_0^1(\Omega)$$
 s.t.:

$$\int_{\Omega} \nabla u \cdot \nabla v - \underbrace{\int_{\Gamma} \frac{\partial u}{\partial n} v}_{=0} = \int_{\Omega} fv \ \forall v \in H^1_0(\Omega).$$

FEM formulation:

Find
$$u_h \in V_h$$
 s.t. :

$$\int_{\Omega} \nabla u_h \cdot \nabla v_h = \int_{\Omega} f v_h \ \forall v \in V_h.$$

FINITE ELEMENT SPACES

Finite element space : $V_h = \{ \text{ cont. piecewise pol. functions on a regular mesh } \}$.

(a) \mathbb{P}^1 shape function in dimension 1.

(b) \mathbb{P}^2 shape function in dimension 1.

(c) \mathbb{P}^1 shape function in dimension 2.

VERY SHORT STORY OF FEMS

Previous works

(a) Standard FEM (Clough 60s).

(b) XFEM (Moes and al., 2006), CutFEM (Burman, Hansbo, 2010-2014).

(c) Shifted Boundary method (Atallah and al., 2021).

(d) ϕ -FEM (Duprez and Lozinski, 2020).

Problems on complex shapes \longrightarrow unfitted FEMs

The idea of ϕ -FEM

Level-set function

$$\Omega = \{\phi < 0\}$$
 et $\Gamma = \{\phi = 0\}$.

The spaces

- $ightharpoonup \mathcal{T}_h: \phi\text{-FEM mesh},$
- $ightharpoonup \mathcal{T}_h^{\Gamma}$: cells of \mathcal{T}_h cut by the boundary (purple triangles),
- $ightharpoonup \mathcal{F}_h^{\Gamma}$: internal facets of \mathcal{T}_h^{Γ} .

Example with
$$\phi(x, y) = -1 + x^2 + y^2$$
.

ϕ -FEM VS Standard FEM

Example (Poisson-Dirichlet equation)

$$-\Delta u = f \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \Gamma. \tag{1}$$

Find
$$u$$
 s.t.
$$\begin{cases} -\Delta u &= f \ , \ \mbox{in } \Omega \ , \\ u &= 0 \ , \ \mbox{on } \Gamma \ . \end{cases}$$

Find
$$w$$
 s.t.
$$\begin{cases} -\Delta(\phi w) &= f \text{, in } \Omega_h \text{,} \\ \text{with } u &= \phi w \text{.} \end{cases}$$

GENERAL PROCEDURE

Example (Poisson-Dirichlet equation)

$$-\Delta u = f \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \Gamma. \quad \text{(1)}$$

- Extend (1) to Ω_h with no b.c. : $-\Delta u = f \text{ in } \Omega_h$,
- Impose b.c. by using the level-set and additional variables : $u = \phi w$,

- ▶ Go to discrete spaces using Lagrange interpolations and finite elements : $\phi \to \phi_h$, $w \to w_h$ and $u \to u_h$,
- ightharpoonup Find w_h such that for all v_h ,

$$\begin{split} \int_{\Omega_h} \nabla(\phi_h w_h) \cdot \nabla(\phi_h v_h) - \int_{\partial \Omega_h} \frac{\partial}{\partial n} (\phi_h w_h) \phi_h v_h + \text{stabs} \\ &= \int_{\Omega_h} f \phi_h v_h - \text{stabs} \,. \end{split}$$

Interests of the method

- ightharpoonup Optimal convergence in L^2 and H^1 norms,
- \blacktriangleright Easy to implement : standard shape functions, no cut cells \longrightarrow standard quadrature rules,
- Acceptable conditioning of the finite element matrix.

Interests of the method

- ightharpoonup Optimal convergence in L^2 and H^1 norms,
- ► Easy to implement: standard shape functions, no cut cells → standard quadrature rules,
- Acceptable conditioning of the finite element matrix.

Other schemes

- ► Mixed boundary conditions : Dirichlet and Neumann conditions,
- Linear elasticity problems,
- Hyperelastic materials,
- Stokes problem,
- ► Heat equation.

- Motivation
- **2** The ϕ -FEM technique
- ${\it 3}$ $\phi\text{-FEM}$ and the heat equation
- **4** ϕ -FEM and Neural networks
- Conclusion and ongoing works

HEAT EQUATION (I)

When will my pan be cold?

$$\begin{cases} \partial_t u - \Delta u &= f \text{ in } \Omega \times (0,T), \\ u &= 0 \text{ on } \Gamma \times (0,T), \\ u_{|t=0} &= u^0 & \text{ in } \Omega \,. \end{cases}$$

HEAT EQUATION (I)

When will my pan be cold?

$$\begin{cases} \partial_t u - \Delta u &= f \text{ in } \Omega \times (0,T), \\ u &= 0 \text{ on } \Gamma \times (0,T), \\ u_{|t=0} &= u^0 & \text{ in } \Omega \,. \end{cases}$$

First step: time discretization

Implicit Euler scheme : given $u^n = \phi w^n$, find $u^{n+1} = \phi w^{n+1}$ such that

$$\frac{\phi w^{n+1} - \phi w^n}{\Delta t} - \Delta(\phi w^{n+1}) = f^{n+1}.$$

HEAT EQUATION (II)

When will my pan be cold?

$$\begin{cases} \partial_t u - \Delta u &= f \operatorname{in} \Omega \times (0,T), \\ u &= 0 \operatorname{on} \Gamma \times (0,T), \\ u_{|t=0} &= u^0 & \operatorname{in} \Omega \,. \end{cases}$$

Time discretization

$$\frac{\phi w^{n+1} - \phi w^n}{\Delta t} - \Delta(\phi w^{n+1}) = f^{n+1}.$$

The proposed scheme

$$\begin{split} &\int_{\Omega_h} \frac{\phi_h w_h^{n+1}}{\Delta t} \phi_h v_h + \int_{\Omega_h} \nabla (\phi_h w_h^{n+1}) \cdot \nabla (\phi_h v_h) \\ &- \int_{\partial \Omega_h} \frac{\partial}{\partial n} (\phi_h w_h^{n+1}) \phi_h v_h + \operatorname{stabs} = \int_{\Omega_h} \left(\frac{u_h^n}{\Delta t} + f^{n+1} \right) \phi_h v_h - \operatorname{stabs}. \end{split}$$

HEAT EQUATION (III)

Theorem (Duprez, Lleras, Lozinski, Vuillemot, 2023)

- $ightharpoonup \mathcal{E}_{l^2(H^1)} \sim \mathcal{O}(h^k)$
- $\triangleright \mathcal{E}_{l^{\infty}(L^2)} \sim \mathcal{O}(h^{k+\frac{1}{2}})$

- Motivation
- **2** The ϕ -FEM technique
- **3** ϕ -FEM and the heat equation
- **4** ϕ -FEM and Neural networks
- Conclusion and ongoing works

CONTEXT: REAL-TIME SIMULATIONS

In the context of real-time simulations, we need quasi-instantaneous results.

 $\qquad \phi\text{-FEM}: \mathsf{precise}\;\mathsf{but}\;\mathsf{slow}\longrightarrow \mathsf{Not}\;\mathsf{real}\text{-time}$

► How to obtain fast results — Neural Networks

lacktriangledown ϕ -FEM + Neural Networks \longrightarrow precise and real-time method

$\phi ext{-}\mathsf{FEM}$ and FNO

A new problem:

How to combine $\phi\textsc{-}\mathsf{FEM}$ and neural networks to obtain fast and precise results?

→ the Fourier Neural Operator.

ϕ -FEM and FNO

A new problem:

How to combine ϕ -FEM and neural networks to obtain fast and precise results?

 \longrightarrow the Fourier Neural Operator.

Why the FNO?

- uses FFT \longrightarrow requires Cartesian grid, as ϕ -FEM,
- according to the authors : more accurate than other ML-methods,
- multi-resolution abilities,
- No need to change the underlying architecture when changing the governing PDE.

You said FNO?

► Parametric application :

$$\mathcal{G}_{\theta}: \mathbb{R}^{ni \times nj \times 3} \xrightarrow{P} \mathbb{R}^{ni \times nj \times nk'} \xrightarrow{\mathcal{H}_{\theta}^{1}} \mathbb{R}^{ni \times nj \times nk'} \xrightarrow{\mathcal{H}_{\theta}^{2}} \cdots \xrightarrow{\mathcal{H}_{\theta}^{4}} \mathbb{R}^{ni \times nj \times nk'} \xrightarrow{Q} \mathbb{R}^{ni \times nj \times 1},$$

with ni (resp nj) the number of pixels in the height (resp width) and nk^\prime a hidden dimension.

You said FNO?

Parametric application :

$$\mathcal{G}_{\theta}: \mathbb{R}^{ni \times nj \times 3} \xrightarrow{P} \mathbb{R}^{ni \times nj \times nk'} \xrightarrow{\mathcal{H}_{\theta}^{1}} \mathbb{R}^{ni \times nj \times nk'} \xrightarrow{\mathcal{H}_{\theta}^{2}} \cdots \xrightarrow{\mathcal{H}_{\theta}^{4}} \mathbb{R}^{ni \times nj \times nk'} \xrightarrow{Q} \mathbb{R}^{ni \times nj \times 1},$$

with ni (resp nj) the number of pixels in the height (resp width) and nk^\prime a hidden dimension.

► Each layer is defined by :

$$\mathcal{H}^{\ell}_{\theta}(X) = \sigma(\mathcal{C}^{\ell}_{\theta}(X) + \mathcal{B}^{\ell}_{\theta}(X)),$$

where σ is an activation function (here GELU), $\mathcal{C}^l_{ heta}$ is a convolution layer and

$$\mathcal{B}^{\ell}_{\theta}(X)_{ijk} = \sum_{k'} X_{ijk} W_{k'k} + B_k ,$$

with $W_{k'k}$ and B_k the kernels and trainable biases which constitute θ .

ϕ -FEM + FNO : THE PIPELINE

$\phi ext{-}\mathsf{FEM}$ and FNO : RANDOM ELLIPSES

First test case

$$-\Delta u=f\,,\ \text{in}\ \Omega,\ u=g\,,\ \text{on}\ \Gamma\,,$$

where $\boldsymbol{\Omega}$ is a random rotated ellipse.

$\phi ext{-}\mathsf{FEM}$ and FNO : random ellipses

First test case

$$-\Delta u = f$$
, in Ω , $u = g$, on Γ ,

where Ω is a random rotated ellipse.

Convergence of the loss function

$(\phi$ -FEM + FNO) VS standard FEM VS ϕ -FEM

Outputs of the three methods.

(ϕ -FEM + FNO) VS standard FEM VS ϕ -FEM

Outputs of the three methods.

Errors of the three methods.

MULTI-RESOLUTION ABILITIES?

Second test case

$$-\Delta u = f$$
, in Ω , $u = g$, on Γ ,

where Ω is defined using Fourier series,

$$\phi(x,y) = 0.4 - \sum_{l} \sum_{l} \alpha_{kl} \sin(k\pi x) \sin(l\pi y),$$

Examples of level-set functions and corresponding domains.

$\phi ext{-}\mathsf{FEM}$ and FNO : $\mathsf{complex}$ shapes

- Motivation
- **2** The ϕ -FEM technique
- Φ ϕ -FEM and Neural networks
- **5** Conclusion and ongoing works

Conclusion

Everything seems to be working

Conclusion

Everything seems to be working

Ongoing works

- ▶ how to construct sufficiently smooth level-set functions from medical images?
 - → First interesting results in 2D and 3D, fast method

Conclusion

Everything seems to be working

Ongoing works

- ▶ how to construct sufficiently smooth level-set functions from medical images?
 - \longrightarrow First interesting results in 2D and 3D, fast method

lacktriangledown ϕ -FEM for mixed Dirichlet-Neumann boundary conditions.

Thank you for your attention!

EQUIVALENCE WITH A MATRIX SYSTEM

Let,

$$V_h = \langle \psi_k \in H_0^1(\Omega) : k \in 1, \dots, N \rangle.$$

Find $u_h \in V_h$ s.t. :

$$\int_{\Omega} \nabla u_h \cdot \nabla \psi_k = \int_{\Omega} f \psi_k \ , \, \forall k$$

 \iff Find $U_h \in \mathbb{R}^N$ s.t.:

$$A_h U_h = F_h$$
 , where $egin{cases} A_h &= \left(\int_\Omega
abla \psi_k \cdot
abla \psi_j
ight)_{kj} \ F_h &= \left(\int_\Omega f \psi_k
ight)_k \ U_h &= \left(U_{h,k}
ight)_k \end{cases}$

The final solution is then:

$$u_h = \sum_{k=1}^{N} U_{h,k} \psi_k .$$

(1)

Example (Poisson-Dirichlet equation)

Recall eq. (1):

$$-\Delta u = f \quad \text{ in } \Omega, \quad u = 0 \quad \text{ on } \Gamma \,.$$

ϕ -FEM scheme

Find w_h such that for all v_h ,

$$\begin{split} \int_{\Omega_h} \nabla(\phi_h w_h) \cdot \nabla(\phi_h v_h) - \int_{\partial \Omega_h} \frac{\partial}{\partial n} (\phi_h w_h) \phi_h v_h \\ + \operatorname{stabs} &= \int_{\Omega_h} f \phi_h v_h - \operatorname{stabs}. \end{split}$$

Who are «stabs»?

- First order: Ghost penalty,
- Second order: mean square imposition of (1) on \mathcal{T}_h^{Γ}

CONVOLUTION LAYER

lacksquare ${\cal F}$, 2-dimensional Discrete Fourier transform (DFT) on the ni imes nj grid :

$$\mathcal{F}(X)_{ijk} = \sum_{i'j'} X_{i'j'k} e^{2\sqrt{-1}\pi \left(\frac{ii'}{ni} + \frac{jj'}{nj}\right)},$$

 $\triangleright \mathcal{F}^{-1}$, its inverse :

$$\mathcal{F}^{-1}(X)_{ijk} = \frac{1}{ni} \frac{1}{nj} \sum_{i'j'} X_{i'j'k} e^{-2\sqrt{-1}\pi \left(\frac{ii'}{ni} + \frac{jj'}{nj}\right)}.$$

 $ightharpoonup \mathcal{C}^{\ell}_{ heta}(X)$, the convolution kernel :

$$\mathcal{C}^{\ell}_{\theta}(X) = \mathcal{F}^{-1}\Big(\mathcal{F}(X) \cdot \hat{W}\Big).$$

THE LOSS FUNCTION

$$\mathcal{L} = \frac{1}{N} \sum_{n=0}^{N} \sqrt{\frac{\mathcal{E}_0(\omega^n u^n, \omega^n \hat{u^n}) + \mathcal{E}_1(\omega^n u^n, \omega^n \hat{u^n}) + \mathcal{E}_2(\omega^n u^n, \omega^n \hat{u^n})}{\mathcal{N}_0(\omega^n u^n) + \mathcal{N}_1(\omega^n u^n) + \mathcal{N}_2(\omega^n u^n)}},$$

where

$$\begin{split} \mathcal{E}_0(\omega u, \omega \hat{u}) &= \mathsf{MSE}(\omega u, \omega \hat{u}) \,, \\ \mathcal{E}_1(\omega u, \omega \hat{u}) &= \mathsf{MSE}(\omega \nabla_x^h u, \omega \nabla_x^h \hat{u}) + \mathsf{MSE}(\omega \nabla_y^h u, \omega \nabla_y^h \hat{u}) \,, \\ \mathcal{E}_2(\omega u, \omega \hat{u}) &= \mathsf{MSE}(\omega \nabla_x^h \nabla_x^h u, \omega \nabla_x^h \nabla_x^h \hat{u}) \\ &+ \mathsf{MSE}(\omega \nabla_x^h \nabla_y^h u, \omega \nabla_x^h \nabla_y^h \hat{u}) + \mathsf{MSE}(\omega \nabla_y^h \nabla_y^h u, \omega \nabla_y^h \nabla_y^h \hat{u}) \,, \end{split}$$

and

$$\mathcal{N}_{0}(\omega u) = \frac{1}{ni \times nj} \sum_{i=0}^{ni} \sum_{j=0}^{nj} \|\omega(i,j)u(i,j)\|^{2},
\mathcal{N}_{1}(\omega u) = \frac{1}{ni \times nj} \sum_{i=0}^{ni} \sum_{j=0}^{nj} \left(\|\omega(i,j)\nabla_{x}^{h}u(i,j)\|^{2} + \|\omega(i,j)\nabla_{y}^{h}u(i,j)\|^{2} \right),
\mathcal{N}_{2}(\omega u) = \frac{1}{ni \times nj} \sum_{i=0}^{ni} \sum_{j=0}^{nj} \left(\|\omega(i,j)\nabla_{x}^{h}\nabla_{x}^{h}u(i,j)\|^{2} + \|\omega(i,j)\nabla_{x}^{h}\nabla_{y}^{h}u(i,j)\|^{2} + \|\omega(i,j)\nabla_{x}^{h}\nabla_{y}^{h}u(i,j)\|^{2} \right),$$