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1Motivation

Context
Construction of digital twins, in real-time, for surgical interventions.

Tools
▶ Simulation of the deformations of organs : PDEs −→ FEMs,
▶ Complex geometries −→ Unfitted FEMs,
▶ Real-time constructions −→ machine learning techniques.

New method :ϕ-FEM, unfitted method, precise, easy to implement.
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2ϕ-what ?

▶ FEM : Finite Element Method

▶ Idea : from continuous to discrete,
• Strong formulation :

Find u ∈ H2(Ω) s.t : −∆u = f in Ω , u = 0 on ∂Ω .

• Weak formulation :
multiplication by a "test function" + integration by parts,

Find u ∈ H1
0 (Ω) s.t. :∫

Ω
∇u · ∇v −

∫
Γ

∂u

∂n
v︸ ︷︷ ︸

=0

=

∫
Ω
fv ∀v ∈ H1

0 (Ω).

• FEM formulation :

Find uh ∈ Vh s.t. :∫
Ω
∇uh · ∇vh =

∫
Ω
fvh ∀v ∈ Vh.
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3Finite element spaces

Finite element space :Vh = { cont. piecewise pol. functions on a regular mesh } .

(a) P1 shape function in dimension 1. (b) P2 shape function in dimension 1.

(c) P1 shape function in dimension 2.



4Very short story of FEMs

Previous works

(a) Standard FEM (Clough 60s).

(b) XFEM (Moes and al., 2006),
CutFEM (Burman, Hansbo,
2010-2014).

(c) Shifted Boundary method
(Atallah and al., 2021).

(d) ϕ-FEM (Duprez and Lozinski,
2020).

Problems on complex shapes −→ unfitted FEMs



5The idea of ϕ-FEM

Level-set function

Ω = {ϕ < 0} et Γ = {ϕ = 0} .

The spaces
▶ Th :ϕ-FEM mesh,
▶ T Γ

h : cells of Th cut by the
boundary (purple triangles),

▶ FΓ
h : internal facets of T Γ

h .

Example with ϕ(x, y) = −1 + x2 + y2.



6ϕ-FEM VS Standard FEM

Example (Poisson-Dirichlet equation)

−∆u = f in Ω, u = 0 on Γ . (1)

Find u s.t.

{
−∆u = f , in Ω ,

u = 0 , on Γ .
Find w s.t.

{
−∆(ϕw) = f , in Ωh ,

withu = ϕw .



7General procedure

Example (Poisson-Dirichlet equation)
−∆u = f in Ω, u = 0 on Γ . (1)

▶ Extend (1) to Ωh with no b.c. :
−∆u = f in Ωh,

▶ Impose b.c. by using the level-set and
additional variables :u = ϕw,

▶ Go to discrete spaces using Lagrange interpolations and finite elements :
ϕ→ ϕh,w → wh andu→ uh,

▶ Findwh such that for all vh,∫
Ωh

∇(ϕhwh) · ∇(ϕhvh)−
∫
∂Ωh

∂

∂n
(ϕhwh)ϕhvh + stabs

=

∫
Ωh

fϕhvh − stabs .



8ϕ-FEM

Interests of the method
▶ Optimal convergence inL2 andH1 norms,
▶ Easy to implement : standard shape functions, no cut cells −→ standard

quadrature rules,
▶ Acceptable conditioning of the finite element matrix.

Other schemes
▶ Mixed boundary conditions : Dirichlet and Neumann conditions,
▶ Linear elasticity problems,
▶ Hyperelastic materials,
▶ Stokes problem,
▶ Heat equation.
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9Heat equation (I)

When will my pan be cold ?
∂tu−∆u = f in Ω× (0, T ),

u = 0 on Γ× (0, T ),

u|t=0 = u0 in Ω .

First step : time discretization

Implicit Euler scheme : givenun = ϕwn, findun+1 = ϕwn+1 such that

ϕwn+1 − ϕwn

∆t
−∆(ϕwn+1) = fn+1 .
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10Heat equation (II)

When will my pan be cold?


∂tu−∆u = f in Ω× (0, T ),

u = 0 on Γ× (0, T ),

u|t=0 = u0 in Ω .

Time discretization
ϕwn+1 − ϕwn

∆t
−∆(ϕwn+1) = fn+1 .

The proposed scheme∫
Ωh

ϕhw
n+1
h

∆t
ϕhvh +

∫
Ωh

∇(ϕhw
n+1
h ) · ∇(ϕhvh)

−
∫
∂Ωh

∂

∂n
(ϕhw

n+1
h )ϕhvh + stabs =

∫
Ωh

(
un
h

∆t
+ fn+1

)
ϕhvh − stabs .



11Heat equation (III)

Theorem (Duprez, Lleras, Lozinski, Vuillemot, 2023)
▶ El2(H1) ∼ O(hk)

▶ El∞(L2) ∼ O(hk+ 1
2 )
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12Context : real-time simulations

In the context of real-time simulations, we need
quasi-instantaneous results.

▶ ϕ-FEM : precise but slow −→ Not real-time

▶ How to obtain fast results −→ Neural Networks
▶ ϕ-FEM + Neural Networks −→ precise and real-time method



13ϕ-FEM and FNO

A new problem :
How to combineϕ-FEM and neural networks to obtain fast and precise results?

−→ the Fourier Neural Operator.

Why the FNO ?
▶ uses FFT −→ requires Cartesian grid, asϕ-FEM,
▶ according to the authors : more accurate than other ML-methods,
▶ multi-resolution abilities,
▶ No need to change the underlying architecture when changing the governing

PDE.
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14You said FNO ?

▶ Parametric application :

Gθ : Rni×nj×3 P−→ Rni×nj×nk′ H1
θ−−→ Rni×nj×nk′ H2

θ−−→

. . .
H4

θ−−→ Rni×nj×nk′ Q−→ Rni×nj×1,

withni (respnj) the number of pixels in the height (resp width) andnk′ a
hidden dimension.

▶ Each layer is defined by :

Hℓ
θ(X) = σ

(
Cℓ
θ(X) + Bℓ

θ(X)
)
,

whereσ is an activation function (here GELU), Cl
θ is a convolution layer and

Bℓ
θ(X)ijk =

∑
k′

XijkWk′k +Bk ,

withWk′k andBk the kernels and trainable biases which constitute θ.
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15ϕ-FEM + FNO : the pipeline

ϕ

f

g

X P Fourier layer Q w

4 times

×

+ u

ϕ < 0 in Ω, ϕ = 0 on ∂Ω

v

F Ŵ F−1

Bℓ
θ

+

C l
θ

σ



16ϕ-FEM and FNO : random ellipses

First test case

−∆u = f , in Ω, u = g , on Γ ,

where Ω is a random rotated ellipse.

Convergence of the loss function
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17(ϕ-FEM + FNO ) VS standard FEM VS ϕ-FEM

Outputs of the three methods.

Errors of the three methods.
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18Multi-resolution abilities ?



19ϕ-FEM and FNO : complex shapes

Second test case

−∆u = f , in Ω, u = g , on Γ ,

where Ω is defined using Fourier series,

ϕ(x, y) = 0.4−
∑
k

∑
l

αkl sin(kπx) sin(lπy),

Examples of level-set functions and corresponding domains.



20ϕ-FEM and FNO : complex shapes
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Conclusion

Everything seems to be working

Ongoing works

▶ how to construct sufficiently smooth level-set functions from medical images?
−→ First interesting results in 2D and 3D, fast method

▶ ϕ-FEM for mixed Dirichlet-Neumann boundary conditions.
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Thank you for your attention!



22Equivalence with a matrix system

Let,
Vh = ⟨ψk ∈ H1

0 (Ω) : k ∈ 1, . . . , N⟩ .

Finduh ∈ Vh s.t. :∫
Ω

∇uh · ∇ψk =

∫
Ω

fψk , ∀k

⇐⇒ FindUh ∈ RN s.t. :

AhUh = Fh , where


Ah =

(∫
Ω

∇ψk · ∇ψj

)
kj

Fh =

(∫
Ω

fψk

)
k

Uh = (Uh,k)k

The final solution is then :

uh =
N∑

k=1

Uh,kψk .



22Stabs terms

Example (Poisson-Dirichlet equation)
Recall eq. (1) :

−∆u = f in Ω, u = 0 on Γ . (1)

ϕ-FEM scheme
Findwh such that for all vh,∫

Ωh

∇(ϕhwh)·∇(ϕhvh)−
∫
∂Ωh

∂

∂n
(ϕhwh)ϕhvh

+ stabs =

∫
Ωh

fϕhvh − stabs .

Who are « stabs » ?
▶ First order : Ghost penalty,
▶ Second order : mean square imposition of (1) on T Γ

h .



22Convolution layer

▶ F , 2-dimensional Discrete Fourier transform (DFT) on theni× nj grid :

F(X)ijk =
∑
i′j′

Xi′j′ke
2
√
−1π

(
ii′
ni

+ jj′
nj

)
,

▶ F−1, its inverse :

F−1(X)ijk =
1

ni

1

nj

∑
i′j′

Xi′j′ke
−2

√
−1π

(
ii′
ni

+ jj′
nj

)
.

▶ Cℓ
θ(X), the convolution kernel :

Cℓ
θ(X) = F−1

(
F(X) · Ŵ

)
.



22The loss function

L =
1

N

N∑
n=0

√
E0(ωnun, ωnûn) + E1(ωnun, ωnûn) + E2(ωnun, ωnûn)

N0(ωnun) +N1(ωnun) +N2(ωnun)
,

where

E0(ωu, ωû) = MSE(ωu, ωû) ,

E1(ωu, ωû) = MSE(ω∇h
xu, ω∇h

xû) + MSE(ω∇h
yu, ω∇h

y û) ,

E2(ωu, ωû) = MSE(ω∇h
x∇h

xu, ω∇h
x∇h

xû)

+MSE(ω∇h
x∇h

yu, ω∇h
x∇h

y û) + MSE(ω∇h
y∇h

yu, ω∇h
y∇h

y û) ,

and
N0(ωu) =

1

ni× nj

ni∑
i=0

nj∑
j=0

∥ω(i, j)u(i, j)∥2 ,

N1(ωu) =
1

ni× nj

ni∑
i=0

nj∑
j=0

(
∥ω(i, j)∇h

xu(i, j)∥2 + ∥ω(i, j)∇h
yu(i, j)∥2

)
,

N2(ωu) =
1

ni× nj

ni∑
i=0

nj∑
j=0

(
∥ω(i, j)∇h

x∇h
xu(i, j)∥2

+∥ω(i, j)∇h
x∇h

yu(i, j)∥2 + ∥ω(i, j)∇h
y∇h

yu(i, j)∥2
)
,
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