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Table de notations

Nous introduisons dans la Table suivante un ensemble (non exhaustif) de notations

qui seront utilisées a de multiples reprises dans ce manuscrit.

Notation Signification
" Q Domaine considéré
E I'=900 Frontiere du domaine €2
@ n Vecteur normal unitaire extérieur au domaine §2
g ® Fonction level-set définissant 2 et I’
E) O Boite [0, 1]?
© T Maillage de calcul p-FEM
%g h Taille caractéristique des cellules d’un maillage
= ’ELF Cellules de 7T, coupant la frontiére I'
%) F} Facettes internes de T,"
oD, ON, 7. Parameétres de stabilisation et de pénalisation

© o Tenseur des contraintes (linéaire)
:g € Tenseur de déformation
E P Premier tenseur de Piola-Kirchhoff
H fy A Constantes de Lamé

Gf Opérateur ground truth
o 0 Ensemble de parameétres a optimiser
E Go Opérateur paramétrisé par 6

F, F1 Transformation de Fourier discréte et son inverse
o Fonction d’activation non linéaire
L Fonctionnelle a minimiser (loss function)
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Plan du manuscrit

Le premier chapitre de ce manuscrit est consacré a une introduction générale. Nous y
exposerons le contexte scientifique de cette theése, accompagné d’une revue de méthodes
existantes dans la littérature. Cela permettra de justifier le choix de la méthode ¢-
FEM comme méthode principale de ce travail. En fin de chapitre, nous présenterons en
détail cette méthode appliquée a la résolution du probleme de Poisson : d’abord avec
conditions de Dirichlet, telle qu’introduite dans [2§], puis avec conditions de Neumann,
selon Papproche développée dans [23].

Le second chapitre propose une extension de la méthode p-FEM a diverses équations
aux dérivées partielles. Nous débuterons par une nouvelle formulation pour le probléme
de Poisson avec conditions de Dirichlet, avant d’introduire deux versions de ¢p-FEM
capables de traiter efficacement des conditions mixtes Dirichlet-Neumann, y compris dans
des contextes présentant des singularités. Nous poursuivrons par une étude théorique et
numérique d’un schéma adapté a ’équation de la chaleur avec conditions de Dirichlet,
développée dans le cadre de l'article « p-FEM for the heat equation : optimal convergence
on unfitted meshes in space », en collaboration avec Michel Duprez, Vanessa Lleras et
Alexei Lozinski (cf. [27]). La suite du chapitre sera dédiée aux problemes d’élasticité
linéaire, notamment les cas d’interfaces et de fractures. Les trois premieres parties de cette
section s’appuient sur les travaux présentés dans article « o-FEM : an efficient simulation
tool using simple meshes for problems in structure mechanics and heat transfer », réalisé
en collaboration avec Stéphane Cotin, Michel Duprez, Vanessa Lleras et Alexei Lozinski
(cf. [22]). Enfin, nous introduirons de nouveaux cas tests pour les conditions mixtes
Dirichlet-Neumann, puis nous adapterons le schéma ¢-FEM traitant le cas de conditions
mixtes a des problemes d’élasticité non-linéaire.

Le troisieme chapitre de ce manuscrit sera consacré a une adaptation de 'idée utilisée
pour ¢-FEM au cas des différences finies. Ce chapitre sera issu de 'article « ¢-FD :
A well-conditioned finite difference method inspired by o-FEM for general geometries
on elliptic PDEs » publié en collaboration avec Michel Duprez, Vanessa Lleras, Alexei
Lozinski et Vincent Vigon (cf. [25]). On proposera alors un nouveau schéma différences
finies pour lequel une étude théorique sera proposée. Cette méthode sera ensuite comparée
numériquement a la littérature différences finies ainsi qu’aux approches éléments finis.

Dans un quatrieme chapitre, nous nous intéresserons a des combinaisons entre mé-
thodes éléments finis et réseaux de neurones. Nous considérerons alors différentes équations
et proposerons une nouvelle approche combinant les avantages de la méthode p-FEM ainsi
que la rapidité d’évaluation des réseaux de neurones. Ce chapitre sera majoritairement
issu de l’article « o-FEM-FNO : a new approach to train a Neural Operator as a fast
PDE solver for variable geometries » (cf. [26]).

Dans le dernier chapitre, nous présenterons différents outils utilisés au cours de
cette these, permettant d’utiliser des fonctions level-set pour construire des maillages
« conformes » ainsi qu’une premiere méthode permettant de reconstruire des approxi-
mations de fonctions level-set & partir d’images binaires. Nous présenterons ensuite une
nouvelle méthode type multigrid combinée a I'approche p-FEM. Enfin, dans une derniére
section, nous proposerons une nouvelle approche hybride réseaux de neurone et éléments
finis en combinant la rapidité de o-FEM-FNO et la précision de ¢-FEM-Multigrid.
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Introduction

Chapitre 1 — Introduction

(.1 __Contexteetoutils| . . ... ... ... .. ... ... .......... 5
(L.L1.1 Meéthode éléments finis standardl . . . . ... ... ... ... 6
[1.1.2  Methodes non conformesf. . . . . . . ... ... ... ... 7

(1.2 La méthode o-FEM| . . . . .. ... ... .o 000 9
[[2.1  Conditions de Dirichlet]. . . . . . .. .. ... ... ... ... 10
[1.2.2  Conditions de Neumann| . . . . . . .. ... ... ... .... 12

1.1 Contexte et outils

Les équations aux dérivées partielles (EDP) jouent un réle fondamental dans la
modélisation d’une grande variété de phénomenes physiques, biologiques et mécaniques,
en particulier dans le domaine de la biomécanique. Elles permettent de décrire des
systemes complexes pour lesquels les solutions analytiques sont généralement inaccessibles,
notamment en présence de géométries irrégulieres ou de conditions aux limites non triviales.
La résolution numérique de ces équations revét donc une importance majeure, avec un
besoin croissant d’algorithmes rapides, voire capables de fonctionner en temps réel.

Parmi les approches les plus utilisées pour la résolution d’EDP, la méthode des
éléments finis (MEF, ou FEM pour Finite Element Method) (voir par exemple [36] [32, [10]
pour une présentation détaillée) occupe une place centrale. Néanmoins, cette méthode
rencontre des limitations importantes lorsqu’il s’agit de traiter des géométries complexes,
comme celles des organes, car elle repose sur la construction de maillages conformes.
Cette étape de maillage, souvent délicate, constitue une difficulté majeure a I’application,
notamment en temps réel, de cette méthode.

Pour contourner cette difficulté, des approches dites non conformes ont été dévelop-
pées. Ces méthodes, souvent regroupées sous les appellations de méthodes aux frontieres
immergées (Immersed Boundary Methods, IBM) [67] ou de domaines fictifs [39], per-
mettent de s’affranchir de la nécessité de construire un maillage épousant précisément la
frontiere. Au fil des années, ces approches ont connu de nombreuses améliorations. Si
les premieres versions souffraient souvent d’un manque de précision, les développements
plus récents ont permis d’atteindre des niveaux de performance bien supérieurs, parfois
au prix d’une complexité d’implémentation accrue.
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Dans ce contexte, il est pertinent de présenter certaines de ces méthodes non conformes.
Cette analyse menera alors naturellement a la présentation de la méthode qui sera au
centre de ce manuscrit : la méthode p-FEM.

Pour cela, nous considérons le probleme de Poisson avec conditions de Dirichlet
homogenes au bord, donné par

{—Au = f, dans Q, (1.1)

U =0, surl,

avec 2 C R? (ici d = 2,3) un domaine de frontiere T, f € L?(2) et la normale unitaire
extérieure a , n.

1.1.1 Meéthode éléments finis standard

Une méthode classique pour résoudre ([1.1]) est la méthode des éléments finis (que
l'on appellera par la suite « Standard-FEM ») utilisant des maillages conformes. Soit
v € H} () une fonction test avec

HY Q) ={ue HY(Q) |u=0sur T},

la formulation faible de I’équation (|1.1]) est obtenue par multiplication par v et intégration
par partie, ce qui donne le probléme : trouver u € H}(Q) vérifiant

Q On

/VU'VU—/ 8UU:/fU,VU€Hé(Q).
Q 0! Q
———

=0
Cela nous donne alors une formulation continue, que 1’on discrétise afin de résoudre le
probléme numériquement. On considére un domaine polygonal Q ¢ R? dont la frontiere

I' peut étre exactement représentée par un maillage conforme 7, de taille h et constitué
d’éléments finis simples (par exemple des triangles, tétraedres), tel que :

a- U ¥

KeTh

On représente par exemple un tel maillage pour le cas d’un domaine circulaire a la Figure

LI

Remarque 1.1. Par la suite, on dira qu'un maillage T3, est de taille h lorsque diam(7T") < h
pour tout T' € Tj. En pratique, on essaiera de construire des maillages aussi réguliers
que possible, c’est-a-dire des maillages ou la variation de diam(7") entre les cellules est
minimale. On considérera des maillages géométriquement qualitatifs au sens de Ciarlet
[19].
Soit maintenant ’espace éléments finis de Lagrange de degré k € N*, sur le maillage
Ty, défini par
Vi = {v, € C°(Q) |opyr € Pe(T),V T € Tp}, (1.2)
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FI1GURE 1.1 — Maillage conforme pour une méthode éléments finis standard.

ou Py (T) est I'espace des polynomes de degré inférieur ou égal a k. On notera V,? I’espace
homogene associé, incluant la contrainte u, = 0 sur le bord de 2. Finalement, on peut
introduire la version discrétisée de la formulation faible : trouver uy € Vj, telle que

/ Vuy, - Vo, = / fron ¥V oy € V;?. (1.3)
Q Q

La discrétisation du probléme conduit a un systeme linéaire, qui peut étre résolu
efficacement par des méthodes numériques standards.

1.1.2 Meéthodes non conformes

Intéressons-nous maintenant aux techniques basées sur les éléments finis non conformes.
Les approches initiales telles que [67), 39, B8] manquent de précision en raison de leur
traitement simplifié des conditions aux limites et produisent également des matrices mal
conditionnées. Au cours des deux dernieéres décennies, des méthodes plus précises ont été
développées, notamment la méthode des éléments finis étendus XFEM [69, [46] initialement
introduite pour des problemes d’interfaces ou de fractures, ou encore les méthodes
CwtFEM [I5] 16}, 13] et « Shifted Boundary Method » (SBM) [63]. Ces méthodes présentent
généralement une convergence optimale et les matrices associées sont bien conditionnées,
mais elles nécessitent des regles de quadrature non standard ou des extrapolations pour
assembler les matrices, pouvant rendre les implémentations numériques complexes. Plus
récemment, pour éviter ces contraintes, les auteurs de [28] ont développé une méthode
non conforme appelée p-FEM, qui utilise une fonction level-set pour décrire le domaine.

Afin de comprendre l'intérét de 'approche ¢-FEM par rapport a d’autres méthodes
non conformes, il est intéressant de présenter brievement certaines de ces méthodes.

L’une des premiéres méthodes, notamment introduite par [67, B9, [38], dont 'idée
est d’étendre la solution u du probleme considéré a un maillage cartésien contenant le
domaine 2, a notamment 'inconvénient d’étre relativement lourde numériquement.
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FIGURE 1.2 — Exemple de grille cartésienne 7j contenant une géométrie complexe.

Cela est dii a la résolution qui s’effectue sur 'ensemble de la grille cartésienne puisque le
schéma, éléments finis correspondant est donné par : trouver uy € V3, et A, € M}, tels que

a(up,vn) + b(vp, Ap) = l(vp), Yo, €V,
b(up, pp) =0, Y pun € My,

avec

a(u,v) :/ Vu-Vo, bv,\) = (v,\), etl(v) :/ fu,
ay ay
ou Qho est le domaine couvrant un maillage cartésien 7;, comme représenté a la Figure
, V}, défini par et My, = {un : pps € Po(S),VS € Sr} avec Sr une subdivision
de la frontiere I'.

Une autre méthode plus complexe mais, offrant de trés bons résultats (tant théoriques
que numériques) a été introduite plus récemment. Cette méthode, nommée CutFEM
[13), 14, [44], [16] utilise également 'idée d’immerger le domaine considéré dans un maillage
cartésien. Cependant, on ne considére ici qu'une partie des cellules de la grille, celles
en intersection avec le domaine physique 2 afin de construire le maillage 7, comme
représenté a la Figure [I.3] On obtient alors des cellules coupées par la frontiére, i.e.
des cellules contenant une partie a l'intérieur du domaine et une partie a 'extérieur du
domaine. Pour prendre en compte ces cellules dans le schéma, éléments finis, des termes
de stabilisation ont été introduits.

Le schéma est une nouvelle fois construit & partir d’une intégration par parties de
, que 'on peut, puisque u = 0 sur 9€2, combiner avec les expressions suivantes :

/ udpv =0, / uv =0
o0 o0

G(u,v) = Z /E[(‘)nu] [Onv]

EeF}

et
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FIGURE 1.3 — Exemple de maillage considéré pour 'approche CutFEM. Gauche : grille et
cellules sélectionnées. Droite : domaine coupé considéré lors de I'intégration par parties
(gris), ou les points noirs sont les points de quadrature utilisés sur les cellules coupées.

ol .7-'}1; est 'ensemble des faces internes du maillage 7y, appartenant a des cellules coupées
par I'. Le schéma CutFEM pour résoudre (|1.1)) est finalement donné par : trouver u, € Vj
tel que

/ Vuy, - Vop, —/ Onupvp, —/ upOnp vy, + z/ UpUp + G(uh,vh) = / fop, Yo, € V.
Q o0 o9 h Joo Q

On remarque alors en particulier dans cette formulation que, contrairement a la
méthode précédente, 'intégration par parties est réalisée sur le domaine physique. Ainsi,
cela géneére une complexité d’implémentation plus élevée. On trouve notamment un
package spécialement développé pour cela, le package CutFEMxEl, dépendant de DolfinX,
qui permet d’implémenter la méthode.

1.2 La méthode o-FEM

Une autre méthode, introduite plus récemment dans [2§] sous le nom de ¢-FEM,
propose de résoudre en imposant les conditions de bord a 1’aide d’une fonction
level-set caractérisant la géométrie et sa frontiere. Cette approche a par la suite été
étendue aux conditions de bord de Neumann dans [23]. Plusieurs autres variantes de la
méthode ont ensuite été proposées par exemple pour résoudre le probléeme de Stokes dans
[24] ou des problémes d’élasticité linéaire dans [22]. Nous allons ici rappeler la méthode
w-FEM pour résoudre le probleme de Poisson, dans un premier temps avec conditions de
Dirichlet, puis conditions de Neumann au bord. Nous ne présenterons pas les aspects
théoriques qui ont été proposés dans [28], 23], mais seulement les méthodes, afin d’assurer
une bonne compréhension de la suite du manuscrit.

1. https://github.com/sclaus2/CutFEMx
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1.2.1 Conditions de Dirichlet

On considére un domaine  C O = [0, 1]? C R?, défini par une fonction level-set ¢
telle que

Q:={p <0} et I':={p=0}, (1.4)

avec I' la frontiere de ). L’idée principale de la méthode p-FEM repose sur cette
représentation du domaine permettant de considérer

u=puw, (1.5)

et ainsi de chercher une solution w telle que pw vérifie I’équation (|1.1)). Par construction,
pw = 0 sur I' et donc u satisfait automatiquement les conditions de Dirichlet.
Soit 7710 un maillage triangulaire cartésien de O, dont la taille de cellule est h. Soit

également oy, = 1 Q) ¢ Vinterpolation continue de Lagrange de ¢ (de degré [ > 0) sur T,°,
h,O h

)

avec I ,(llo I'opérateur d’interpolation de Lagrange sur ’espace éléments finis de degré [

sur 7,0.
On construit alors a I'aide de ¢p un sous-maillage 7, de 7;59 contenant toutes les
cellules intersectant le domaine {pp, < 0}, i.e.

= {TeT: Tn{p,<0}#0}. (1.6)

Introduisons également un second sous-maillage, cette fois de Ty, contenant les cellules
coupées par la frontiere, i.e. {¢, = 0}, donné par

Ty ={T €Th TN {pn=0}#0}. (1.7)

TATE mo—T T\ 7

—]:,1, — I

FIGURE 1.4 — Gauche : représentation des ensembles T, et 7};. Droite : représentation de
.7-"}; sur le méme exemple.
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On notera par la suite 2 et Ql}: les domaines occupés par les maillages T, et Thr
respectivement ainsi que 09, la frontiere de €2, (qui est différente de 92 = T" et de
I, = {pn = 0}). Un exemple de représentation des maillages T, et 7, est donné a la
Figure (gauche).

Il est également nécessaire de construire un ensemble .7-"}1; , contenant les facettes
internes du maillage ’775, défini par

Fl={FeTI\o}. (1.8)

Sur la Figure. (droite), ces facettes sont représentées en violet (trait plein) et les
facettes de 0€);, en traits discontinus.
Soit k > 1, un entier. L’espace éléments finis de degré k sur T est défini par

VP = (o, € HY(Q) oplr €P(T)V T € T} (1.9)

Le schéma o-FEM pour résoudre (1.1)) est finalement donné par : trouver wy, € V(k)

telle que, pour tout s € Vh(k) avec up = QrWp €t vy = Sk,

8uh

Vuy - Vo, — / —vp, + Gp(up, vp) / fron + Grhs( R, (1.10)

Q o, On

ou fp est 'interpolation de Lagrange de f sur Vh(k),

Gh(u,v) = oph 3 / { } [ }+0Dh2 /AuAv (1.11)

EeF] TeTr
et

Gl (v) = —oph? 3 /thv (1.12)

TeT}

Les crochets [] dans lexpression de G}, correspondent aux sauts sur les facettes de ]-"}E ,
i.e.

ou
Vut —Vu™) -n,
5] = ¢ )
ou g” Vu - n est la dérivée normale de u et op > 0 est un parametre de stabilisation

indépendant de h. Le premier terme de (1.11)) a été introduit dans [12], sous le nom de
« Ghost penalty » et a été notamment utilisé dans I’approche CutFEM [13].

Remarque 1.2 (Conditions non homogenes). Dans le cas de conditions de bord non

homogenes (u = up sur I' avec up non nulle), uy, deviendra up = prwp + up.

Remarque 1.3. Par la suite, nous ferons régulierement référence a ce schéma sous le nom

de schéma direct, par opposition & sa variante duale qui sera présentée en Section [2.1]
Dans [28], le théoréme de convergence suivant a été prouvé :

Théoréme 1.1 (c.f. [28, Théoreme 2.1]). Sous les hypothéses [28, Hypothése 1] et [28,

Hypothése 2], pour 1 > k, un maillage ’77? quasi-uniforme, une fonction f € H*(Q, U Q).
Soient u € H¥T2(Q) solution evacte du probleme (L.1) et wy solution approchée du



12 CHAPITRE 1. INTRODUCTION

probléme (1.10). Soit up, = ppwy, (la solution approchée de (1.1)). Alors, il existe une
constante positive C telle que :

| = unl1,0,n0 < ChF||f]

k,QUQy, »

et si Q C Qp, alors :
1
o < CAM 2] f]

lu —up oI

ot || - oo désigne la norme L? sur O, |- |10 la semi-norme H' et || - ||x.o la norme k.

Ainsi, la méthode p-FEM offre une convergence sous-optimale pour la norme L?
et optimale pour la norme H' (i.e. 'erreur converge selon le méme ordre que l’erreur
d’interpolation), sous certaines hypotheses sur la régularité de la frontiere I' et des
maillages T, et 7?. De plus, les résultats numériques ont montré un ordre de convergence
optimal également pour I’erreur en norme L2. Enfin, le bon conditionnement de la matrice
éléments finis associée au schéma a été démontré et illustré numériquement.

1.2.2 Conditions de Neumann

Par la suite, nous aurons également besoin de traiter des conditions de Neumann.
Dans [23], un schéma @-FEM permettant de résoudre I’équation

{Aquu = f, dans €, (1.13)

Vu-n =0, sur 'y =T,

a été introduit. Pour traiter ce cas, il est nécessaire d’introduire différentes variables
auxiliaires permettant d’utiliser la fonction level-set cette fois en la reliant & Vu. On
consideére une fois de plus les domaines €2, et QE ainsi que les maillages correspondant
T et TF. Soit également .F}]LVS = d(Th \ T}1), Pensemble des faces entre T, \ 7,1 et Tl
Les différents maillages et ensembles de faces sont représentés a la Figure [1.5

Soient les espaces éléments finis

Z]Sk)(O) = {Zh 0 =R 2T € Pk(T)d VYT € 7710, zp, continue sur O} (1.14)

Qél)(O) = {qh 10 = R:gyr € P(T) YT € T,C, gy continue sur O si | > 0} , (1.15)

avec O C Qy et 7710 le maillage couvrant le domaine O. Les conditions de bord seront
alors imposées via les variables y et p introduites de sorte que

y=—Vu, sur)], (1.16)
divy +u=f, surQ, (1.17)
y-Vo+pp=0, surQl, (1.18)

ou 'on a utilisé le fait que n = V/|V| sur I' pour établir ((1.18]).
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T\ ™o AT [

_ Z

FIGURE 1.5 — Exemple de représentation des ensembles 7y, 7;?, .7-'}1: et .7-",1; s,

Le probléeme est finalement de trouver (up,yp,pn) € Vh( ) }(Lk)(QZ) X ngil)(Ql,:)
tel que

/ Vuh‘Vvh—i—/ yh-nvth/ up, Uy,
Qn o0y, Q,

+ Ydiv /QF (divyp, + up) - (div zp + o) + Ya /QF (yn + Vup) - (21, + Vo)

h h

T . 1 . 1 )
t 3 /Q5 (yh Vo + hPh%) (Zh Ven + 5 anen

ot 5 [ ][22

EeF,s
:/ fhvh+7dw/ Jn - (divzp, 4+ vg),
Q r
(on, 2 an) € VY x Z3P(0F) < Q@) (1.19)

Le schéma est obtenu apres intégration par parties et ajout des équations
sous la forme des moindres carrés. On retrouve également la Ghost penalty

apphquee sur les faces de Ns . Enfin, les termes multipliés par 74, sont les termes de
stabilisation d’ordre 2.

Remarque 1.4 (Conditions de Neumann non homogeénes). Dans le cas de conditions de

Neumann non homogenes, %Z = g sur I, "équation (|1.18)) sera modifiée par

y-Vo+pp=g|Vel,

avec § un prolongement de g de I' au voisinage de I', et le schéma sera adapté en
conséquence.
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Remarque 1.5 (Aspects software et hardware). Dans la suite de ce manuscrit, sauf mention
explicite du contraire, toutes les simulations ont été exécutées avec un processeur Intel
Core i7-12700H, avec 32Gb de mémoire RAM ainsi qu'un GPU NVIDIA RTX A2000
avec 8Gb de mémoire. De plus, toutes les simulations éléments finis ont été réalisées avec
des implémentations Python a l'aide de la librairie FEniCS [2] (version 2019.1.0) et de
son évolution, la librairie FEniCSx [5], 3], 80, [79] (version 0.8.0).
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Résumé

Ce chapitre est consacré a la résolution de plusieurs EDP avec
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avec deux variantes d’imposition de conditions de Neumann afin de
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avec conditions de Dirichlet homogenes au bord, introduite dans [22| 27].
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2.1 Le schéma p-FEM « dual »

Intéressons-nous a présent a un second schéma p-FEM permettant de résoudre
I’équation de Poisson avec conditions de Dirichlet homogenes . Contrairement au
premier schéma présenté en , celui-ci s’inspire du schéma Neumann , en
introduisant une variable auxiliaire localisée sur la bande Qg

On considere donc 1’équation définie sur un domaine €2 inclus dans une boite
O, sur laquelle est construit un maillage cartésien 720. Le domaine €2 et sa frontiere I'
sont décrits a l’aide d’une fonction level-set ¢ (voir ), permettant de construire les
maillages 7Ty, et T,F (cf. et ), ainsi que les sous-domaines associés (2, et QL.

Dans ce nouveau schéma, les conditions de Dirichlet sont imposées par pénalisation a
I’aide d’une variable auxiliaire p définie sur Qg, via I’équation

u=p, surQ. (2.1)

Ainsi, soit k > 0. La variable principale du probléme, u sera discrétisée par uy € Vh(k)

(cf. (1.9)) et la variable auxiliaire p par py, € lek)(ﬂg) (cf. (1.15))). Le schéma ¢-FEM
dual pour (|1.1)) est alors donné par : trouver uy € Vh(k) et pp € Q;Lk) (QF) tels que

Ouy, ~y 1 1
Vup - Vop, — / —— v+ 2 /Qg (up — Esohph)(vh - ESOth)

Qn o, on

+ G (up, vp) = /Q fon + G5 (v), Vo € Vh(k),Qh € ng) (Q2), (2.2)
h

ol Gﬁlhs et G};hs sont les termes de stabilisation introduits dans (1.11)) et ((1.12]) respecti-

vement.

Remarque 2.1 (Conditions de Dirichlet non homogenes). On reconnait la formulation
de départ utilisée pour construire le schéma direct (1.10) (v = pw sur ), imposée
localement via I’équation . Ainsi, pour le cas de conditions non homogenes, i.e.
u = up sur I', il suffit d’appliquer le méme principe et d’imposer u = pp + up dans le
schéma ce qui modifie uniquement l'intégrale sur QL , qui devient

o - )(oh — T onn)
— up — — —up)(vp — — .
Bz Jor h = 7,$hPh = UD)(Vh = 3 nqh

Remarque 2.2 (Schéma direct et schéma dual). Les relations (1.5) et (2.1) semblent
analogues, mais leur role differe sensiblement. Dans le schéma direct, la variable w
remplace entierement u, tandis que dans la version duale, la variable auxiliaire p vient en
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complément de u, ce qui augmente légerement le cofit du calcul. Ce coiit supplémentaire
reste limité puisque p est restreinte a la bande QE, de taille h.

Cependant, la version duale présente deux avantages notables. D’une part, elle utilise
dans la formulation la fonction ¢ localement autour de la frontiére, et non sur ’ensemble
du domaine. D’autre part, elle est naturellement compatible avec le schéma Neumann,
ce qui en fait un outil particulierement adapté pour le traitement de conditions mixtes
Dirichlet/Neumann, que nous aborderons par la suite. A T'inverse, la version directe du
schéma, a I’avantage d’offrir une sorte de correction de la solution lors de la multiplication
de w par ¢, ce qui offre généralement de meilleurs résultats numériquement.

2.1.1 Analyse théorique : résultats principaux et lemmes importants

Dans un premier temps, rappelons les hypotheses sur le domaine et le maillage, issues
de [28], nécessaires a I’étude de convergence du schéma ([2.2]).

Hypothése 2.1.1. La frontiere I peut étre recouverte par des ouverts O;, i = 1,...,1
sur lesquels on peut introduire des coordonnées locales &1, ..., &y avec £; = ¢ telles que,
jusqu’a Pordre k + 1, toutes les dérivées partielles 9“¢; /0x® et 9z /0*E; sont bornées
par une constante Cy > 0. Ainsi, sur O, ¢ est de classe C*T1 et il existe m > 0 tel que
lo| = m sur O\ Uj=1,.. 10;.
Hypothése 2.1.2. La frontiére approchée, définie par I'y, = {5, = 0} peut étre recou-
verte par des patchs d’éléments {II, },—1  n; tels que :

— Chaque patch II, peut s’écrire IT, = IIL U T, ot IIL € T,F et T, € T, \ 7. De plus

I1,., comporte au plus M éléments qui sont connectés avec M indépendant de h;
— Le maillage 77{ vérifie 7;? = Ur:l,...,NHHE ;
— Deux patchs II, et II; sont disjoints si r # s.

Ces hypotheses sont satisfaites lorsque la frontiere I' est suffisamment réguliere, et le
maillage 7T, suffisamment fin.
Nous allons maintenant énoncer le théoreme de convergence du schéma (2.2)

Théoréme 2.1. On suppose que les hypothéses et[2.1.3 sont satisfaites, k > 0 et
f € H=1(Qy,). Enfin, on suppose Q C Q. Soit u € H*1(Q) la solution de (1.1). La

solution de (2.2)) uy € Vh(k) satisfait
Lo S OB fle-r0, et llu—unlloo < CR* V2| flle-r0,

ou C > 0 est une constante.

lu — up

Dans un premier temps, nous rappelons plusieurs lemmes de [28] et [23], qui seront
nécessaires dans les preuves suivantes.

Lemme 2.1 (cf. [28, Lemme 3.3]). Sous 'hypothése [28, Assumption 2], pour tout B > 0
et s € N*, il est possible de choisir a €]0,1[ dépendant uniquement de la régularité du
maillage et de s, tel que pour tout vy, € Vh(s)
dup 1|12
2 2 h
|vh‘1’Q1}: < aluplig, + Bh Z {371] ‘
FeFl 0

+ ,BhZHAvhHSQF :
F *“"h

)
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Lemme 2.2 (cf. [23] Lemme 3.4]). Sous [’hypothése toute fonction v € H*(§2y,)
s’annulant sur Q, avec 1 < s < k + 1, vérifie

< OP? ol 000

Nous rappelons également un Lemme démontré dans [31, Lemme 4.10] :
Lemme 2.3. Pour toute fonction u € H'(Qy),
lullpor < CVRull1,,-
Enfin, nous introduisons un nouveau résultat :
Lemme 2.4. Pour tous u € Vh( ) et pE Q(k (Q), il existe C > 0 tel que
lenpllogr < COIVulgar + e — enplyar) -

Preuve. En utilisant 'inégalité de Poincaré, I'inégalité triangulaire et une inégalité inverse,
on obtient :

o lenpllogor < | (u = onp)llo,ar

C
< ||VUHO,Q£ + EHU - ‘Ptho,Q}; )

ce qui donne le résultat. ]

2.1.2 Coercivité de la forme bilinéaire

Lemme 2.5. Pour ~ et op suffisamment grands, la forme bilinéaire donnée par

ou fy 1 1
an(u, p; v, q) = /Qh Vu-Vu= ot e F(u— 7 2np) (v = 5 ona)
+oph Z / } [ ]+0Dh2/ AulAv, (2.3)
FeF}
est coercive sur Vh(k), selon la norme
2 2 1 1 2 2 2
1€ D)W = Tuligy, + 55 1w~ A s hoy + 0| Aulf gr - (24)
0% perr 0.F

Preuve. Soit By, la bande entre 92, et I'y,, définie par By = {¢, > 0} N Q. Puisque
©n = 0 sur Iy, le terme de bord de ([2.3]) peut étre réécrit pour tout u sous la forme :

ou 9
= / Vuf? + / —EW)

_szr /Fth L%]H Awu . (2.5)
v
111
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Avec le Lemme

I<alulfg, +Bh )
Fe}f

5l
671 0

2 2
| B A g

pour tout 5 > 0. De plus, en utilisant I'inégalité de trace suivie d’'une inégalité inverse,
pour tout € > 0,

1 1 1 1
I11<Cc|{—=||V h|V -7 o=
(\/EH ulloop + VA u|1’95> (\/E TR 0,08 VR noe 1,95)
_ C| | 1
2 1 ’
< ——— .
< Cs]u|LQ£ + hE |4 7, enp 0ar

h

Pour le terme 111, en utilisant les inégalités de Cauchy-Schwarz, de Young combinée a
'inégalité de trace puis le Lemme [2.4] on a

1/2 1/2
oul|? 1 9
1< | n ZF {81@} . - ZFHu\mF
FeF} ’ FeF}
C oul|? Ce (1, 9 9
<oh Z |Gl + 7 (o + i)
FeF} ’
C Hau} 2 ) Ce 1 2
< —Zh + Celul? or + U— —pp :
5 FEZ]:}: on 0.F 1,9, h2 h O,QE
Enfin, pour le terme IV,
Ch? 9 Ce, 9
IV < 5 HAUHO,QE + ﬁ”“”o,gl}:
Ch? 9 9 Ce 1 2
< ?HAUHQQE + 05‘U|I,Q£ + 12 u— E‘Php O,QE .
Ainsi,
ou
—u< C 2
< (et Colullg,

(o) | 2 1l5]

‘2
FeFt

+ 12| A2 or
0,F h

cC\ 1
+<C€+€> 2

1 2

U — E@hp

.
00"
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Alors, en utilisant I’expression ((2.3)),

ah(uap; U,p) P (1 —a— Cg)’uﬁ,ﬂh

C oul|)?
+(on=Z=8) [0 T [[55]] | +mlulzy
c FeFy nlor o
h
s(r-ce- D) u-s 2

Finalement, en prenant ¢ suffisamment petit, op et v assez grands, on obtient

an(u, p;u, p) = Ol (u, p)|[} -

2.1.3 Preuve de l’estimation H!.

Preuve du Théoréme estimation H'. Soit & € H*T1(Q) une extension de la solu-
tion u de Q a €, telle que @ = u sur 2 et

lllk+1,0, < Cllullkro < Cllfllk-10-

On considére f := —Ad et p = %ﬂ. Alors,

an (@, p; vk, qn) Z/Q fvh—O'DhQ/QF fAuy,
h h

ol 1 1

+ 02 or (@ — E‘Php)(vh - E‘Pth) , Y(vn,qn) -

Ainsi, on obtient 'orthogonalité de Galerkin suivante

an(a— unp ~ privnan) = [ (F = Pon—cph® [ (7= £)aw,

h

gl 1 1
h2 T -7 (2.
+ 2 /QZ(’UJ h@hp)(vh hcphqh), V(vp,qn). (2.6)

Alors, par coercivité (c.f. Lemme ,

. ap(up, — Ipa, py, — Inp; vn, qn
el un — Iniis pn — Tnp)lly, < sup 24 )
(0nan) 1 (vr, an)ll,

I—1I—-1I1
sup ———————
(Vh,qn) H|(Uh7Qh)|||h

<
avec
I = ah(em €p; Vh, Qh) 5

II:/Qh(f—f)vh—aDhg/Ql}:(f—f)Avh,

Y 1 1
I = L S -
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ou e, =u— Iyt et e, =p— Ipp.
Estimons chacun des termes. A 'aide de I'expression ([2.5)) :

Oey 1 1
I= w- Vop — I (eu—+ 2
0, Ve, - Vuy, /mh an 'k +h2/ (e hSOhep)(Uh h%@h)
+oph Z/ ae“] 8”"} ph? Y /Aeumh
FeF] TeTl
ov
< lewl,o, vnli,0, — / Ve, - Vvh—/ Aeyvp + Z /eu[ h]
FeFINBy

Oey, 1 Y 1 1
o, an O T perm) F g /Q (€u = gonep) h = ponan)

oo 5 [ [5][2] ot 5 [ s

FeFl

En utilisant I'inégalité de trace [23, Lemme 3.5], les inégalités d’interpolation et I’expres-

sion (),
I < ChM|[alliss., 1 (wns @)l < CHE ) Flli—s.all(wns an)ll -

Pour le terme I7, puisque f = f sur Q, et en rappelant que l'on a supposé Q C Qy, on a

(HUhHO:Qh\Q + Uh2HAvhHO,Qh\Q)

1n 1
< ORI f = flli-1.0m0 <h|vh\1,ﬂh v L end ‘ + Uh2”AUh”0,QF>
0,0F "

< CRM| f =100l (0ns an) -

Il ne reste finalement plus qu’a estimer le terme I11. Alors,

11T <

C .
< EHU (vns qn)lll, -

Or, puisque 4 = %pgp sur Ql,:,
C P
111 < Cllo = ol £ el
h hlloar

En utilisant les inégalités d’interpolation et l'inégalité de Hardy (cf. [28, Lemme 3.1]),

11 < Ch¥|lpllwgs 1l ap l(ons @)l

Ch¥| fllk—1.0ll (vn, gl -

VAN/A

A T'aide des estimations de (I) — (I1I), par définition de ||-||,, on obtient ainsi

un — Iniilvey, < ll(un — Int, pp — L)l < CR¥| fllk-1,0-
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Finalement, par inégalité triangulaire et les inégalités d’interpolation,

lup, — uli0 < |up — Iyt g, + Iyt — )10,
< W[ fllk-vr.0 + Ch*|[@]lk 11,0,
< ChY|| flle-1.0-

2.1.4 Preuve de ’estimation 2.

Preuve du Théoréme estimation L?. Soit w: Q — R, telle que

—Aw =u —uyp, dans ,
w =0, sur I".

Par régularité elliptique,
[wll2.0 < Cllu = upllo,o-

Soient @ une extension H? de w de & €, telle que
@20 < Cllwll2,0

et wy, := Ipw.
A Taide d’une intégration par partie, on remarque que

Hu—uhHOQ—/(u—uh)( Aw) /Vu—uh) Vw — /8 (u — up)
—/Vu—uh (w—wh)%—/QV(u—uh)-th— F—n(u—uh)

_/Fg::(u_uh)‘

<CR f s i, +| [ V(= un) - Tuy

Pour traiter le dernier terme, nous remarquons que

ow
L on

sl

|
o,r
De plus, comme la distance entre I' et T, est d’ordre A**1 on a

(& — unllo,r, +R* D25 — wp 1 0,)

h(k+1)/2’

1
:C(HE(@_S@h)p”O,Fh a—upl1,0,)

1 -
— C(hk+1”90HW§o+l(Q£) HEPHO,F;L + h(k+1)/2‘u — uhll,ﬂh)
< C(R* M illo,q, +RFFI2HE) £l q,)-

D’ou,
ow

[ S (u = wn) < R f o1, 0 = o
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En utilisant les expressions (2.3]) et (2.6), avec v, = wy, et g, = 0, on obtient

on
v 1 U — up, owy,
h2/ (Uh—hsﬁhphWthUDhZ/{ H&n]

FeFy

V(@ — up) - Vwp, — / Mwh
o,

toph® [ A —uw)dw, = [ (F=fu,
- O'Dh2 /QF(fN— f)Awh.

h

On rappelle que @ = u sur {2, ce qui entraine

1

lu = unll o < CH* Y| fllk-1,9, 1w — unlloq +

/ V(u —up) - Vwy,
Q\Q

II 111

* ’/agh “on M TRz QE(Uh B‘Phph)wh

v
(i — up, } {811};1}
on

/Qh(f—f)wh +

—_— —m———
VI VII

—|—O‘DhZ/

FeFi

+ O’DhQ/FA(ﬂ—uh)Awh
@,

|

+ oph? /Qr(f—f)Awh .

Pour le terme I, on utilise 'estimation H', une inégalité inverse et le Lemme :

I < Cli—uplr0, lwnlone < ChF|lullis,0, b

Pour le terme I1, en utilisant l'inégalité de trace [28, Lemme 3.5],

¢ (VAIV(@ — un)lyog + =19~ oy ) (Vlunhop + = lunllo ) -
Or, par inégalité triangulaire, inégalité inverse et inégalité d’interpolation,
VIV (@ — un)ly or < VA (IV (@ — @)y gr + |V (Iyi — u)ly gr )
<Vh <hk_1|ﬂ\k+1,9h + %’Iha - Uhh,szg)
<vVh <7”Lk_1|ﬂ|k+1,§z,1 + %’Iha —afyor + %W - Uh|1,szg>

<Yy 0, -
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De plus, par inégalité de Poincaré et le Lemme 2.3

Vo + < CVRlwnly g < Chljwllo.

1
ﬁ”whHo,Qg

Finalement, on obtient ainsi

1T < ChE1/2 0 < ChE+1/2

Pour le terme I11, on a

1
11T < - —
h up, hsohph

lwnllo,qr -
oar 0,0F

Estimons les deux termes

1

Up — ESthh

B 1
+ |[{pt — E‘Phlhp

<
r

*“"h

up, — Ipt — E(Ph(ph - Ihp)H

’ T
0,0F

r
Qh

)

Inu — *thhp

< il (un = Int, pn — Inp) |, + A

792

CR* | flle—1,0 +

1
Iya — —opp 1
U h‘Phhp

T
0,0

Or, par inégalité triangulaire et de Hardy

1 1 1 1 1
i — ~pnl, < | Init — i Sop— - I
nt — 5 enlnp nar [t = allo or + Hh@p ponp| ot Hh%p ponlp|
- p
< O allng,0, + CthHSOHWf;l(Qg) ‘hHOQF +Cllp— ftho,QI,;
A
< OWF i, + OB 2
k0

< CR* 41,0, -
De plus, d’apres I'inégalité de Poincaré et le Lemme
lwnllogr < Chlunlyor < CHY2 fw]q .
D’ou,
11 < CRFHitllkg1,0, Y [wlo.o < CRY2| e allwlon -
Pour le terme IV, en utilisant le raisonnement appliqué au terme 17, on obtient

IV < ChH 2 f o glfwla < CHF2

Pour le terme V,

V < oph? (Ji = Inily.gr + i — unlyor ) wllo0

1y~ C,
< oph? (Chk 1\|U||k+1,91; + Euhu - uh|1,Q}:>

C
< oph? (Chk 1Hu||k+1 ar T (|Ihu —aly or + & — uply QF))

<




2.1. LE SCHEMA ¢-FEM « DUAL » 25

Pour les termes VI et VII, on a de maniere similaire,

VI + VI < ChM Y| flli—1,0h® 2 [[wllz.0 + OB flliorollwll2e

<
< CRF 2| fllr-rallw]2.q -

Finalement, en combinant toutes les estimations précédentes, on obtient

Chk+1/2

lu — unllg o < [f k-1, llv = unlloq,

ce qui meéne a la conclusion. O

2.1.5 Conditionnement

Théoréme 2.2. On suppose que les Hypothéses et sont satisfaites et on
rappelle que l’on considére un maillage Ty, quasi-uniforme. Alors, le conditionnement de
la matrice éléments finis A associée a la forme bilinéaire aj, vérifie kK(A) < Ch™2 ou

R(A) = [| A2l Ao
Démonstration. On rappelle (cf. [23, Equation (17)]) que, pour tout g, € @ k)(QF)

lanlloor < Ch™Hllenanllo qr-

On suppose, sans perte de généralité, que h < 1. On cherche dans un premier temps a
démontrer que

an(0ns an; ons @n) = C (lonlld 0, + lanl gr ) - (2.7)

0,Q£>

De plus, en utilisant 'inégalité de Poincaré [11l, Equation (1.1)] combinée & I'inégalité de
trace

Or, en utilisant le Lemme et la coercivité de ay,

1
Vp — E@th

1
lanlloag < |50 o(mv%m%+

07Qh

< Chl[(va, an)ll, -

llvallo,0, < C (lvnlr,e, + llvalloo0,)

<| Uhl1,0, + fHUhHOQF)

oh = ~onan
h 0,0
Cll(vn, an) ”|h

r
O,Qh>

1 1
+— |-
\/}—th@th

Finalement, en utilisant la coercivité de ay,

an(vns an; ons @1) = Cll (wns an)lli = € (lonli g, + lanllg or ) -
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Dans un second temps, montrons que

C
an(on i v, an) < 75 (lenlld o, + lanll§or ) - (2.8)

Par définition de ay, (cf. (2.3))) et en utilisant I'inégalité de Cauchy-Schwarz,

an(onsaionsan) < C(lto, + | 2] lenloan, + gl
h\Vh, Qh; hs Qh hi1 Qh 0789’1 h O,th h2 h 075‘2}1:
1 1 2 8’Uh 2 2
+ 3 AN th H + h”[va r) :
h2 h OﬁQh 2’Qh

Alors, en utilisant I'inégalité de trace, et 'inégalité inverse, on obtient,

1o 11,
an(Vh, qn; Vhy qn) < C<hQH’UhH07Qh + Wﬁ””h”wz
1 9 1 9
+ ol oy + gl )

ce qui donne le résultat désiré.
Appelons N la dimension de V"’ x @, (k) (QF) et associons & tout

(vn,qn) € Q(k Q) le vecteur v € RY des coefficients de (v, qp,) dans la base
éléments ﬁnls standard. Rappelons que le maillage est quasi-uniforme et en utilisant
I’équivalence de normes sur un élément de référence, on a

(hmebgume%+H%%@£gcﬁwﬂwl (2.9)

Les bornes (2.9) et (2.8)) donnent

|All2 = sup (Av.v) _ sup a1 (Vn, Gh; Vn, n)
veRN |V|2 veRN ’vg
< Che sup an(Vhs Gns Vhs qn) < ond-2

(vn.an)€V,H x QM () lvnlig g, + HQhHO or

De la méme maniere, et (2.7) impliquent

- vi3 vI3
A~ Yy = sup [vI2 = sup
A= verN (AV, V) cgnN an(Vh, Gn; Vh, )
¢ ol +laler o
<3 sup < e

h ap\v U
(Uhth)GVék)XQEIM(QE) 1 (Vs Qs Vhs )

ce qui meéne au résultat.
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2.1.6 Résultats numériques

Nous allons maintenant illustrer sur plusieurs cas test la convergence numérique de
cette méthode, comparée au premier schéma p-FEM introduit dans [28] et rappelé a
la Section [I.2] qui sera appelé schéma direct. Nous comparerons également les deux
approches a une méthode standard conforme (cf. )

Remarque 2.3 (Normes considérées). Pour illustrer la convergence des méthodes, nous
considérerons les normes suivantes :

l|lup — UrefH%z(me) ~ Jo.; [un — Uref|2dx

HurefH%2 (Qrer) fﬂref |tret|*d

(2.10)

et

’Uh - Uref’%l(gref) N eref |vuh - vuref‘de

, (2.11)
’uref’%_ll(gref) fgref |vuref’2d1’

ot 'on note uy, une approximation de la projection orthogonale L? de la solution calculée,
sur un maillage de référence 7.of du domaine ., approximation de §2 et uyf une solution
de référence (manufacturée ou solution fine éléments finis).

Cas test 1 : Conditions non homogeénes, sur un disque. Dans un premier temps,
considérons 1’équation , avec conditions de Dirichlet non homogenes au bord (i.e.
u =wup # 0 sur I'). Le domaine 2 sera le disque centré en (0.5,0.5) de rayon 0.3125.
Pour illustrer I'un des intéréts de ’approche duale par rapport a I’approche directe, le
domaine 2 sera décrit par deux fonctions level-set différentes. Dans un premier temps, la
version la plus lisse et la plus adaptée a 'approche directe sera utilisée, en définissant la
parabole
©1(z,y) = —0.3125% 4 (. — 0.5)* + (y — 0.5)%.

Dans un second temps, nous utiliserons 1’équation correspondant a la distance signée
au cercle, c’est-a-dire

pa(x,y) = —0.3125 + \/(z — 0.5)2 + (y — 0.5)2.

Les erreurs seront calculées par rapport a une solution tres fine FEM standard
(calculée avec h ~ 0.001). Le second membre est donné par f(z,y) = —1 et les conditions
de bord sont données par up(z,y) = cos(%)sin(%). On se place enfin dans le cas
d’éléments finis P! (ie. k = 1).

On représente les résultats obtenus a la Figure[2.]] illustrant que ordre de convergence
théorique est atteint en norme H'! et dépassé en norme L?. Cependant, il est important de
distinguer deux cas, puisque les résultats des deux schémas ¢-FEM sont comparables lors
de T'utilisation de la level-set o (traits pleins), tandis que l'utilisation de la fonction
¢1 (traits discontinus) améliore grandement les performances du schéma direct. Cette
variation de résultats pour le schéma direct (absente pour le schéma dual, les courbes
vertes étant presque superposées) peut notamment s’expliquer par la présence d’une
singularité sur le gradient de @2 qui n’a pas d’influence sur le schéma dual.
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1073

§ § 1072
b} b
v g
RCAT =
& Direct o-FEM & —e— Direct ¢-FEM
2 . —=— Standard FEM % " --e-- Direct p-FEM
o~ -*- Direct p-FEM __ —=— Standard FEM
105 /,// —<— Dual p-FEM _,_—0"‘/ —<— Dual p-FEM
-—<-- Dual o-FEM e -—<-- Dual p-FEM
% -t
6x 1073 10—2 2x 1072 3x10724x 1072 6x 1073 10—2 2x 1072 3x10724x 1072
h h

FIGURE 2.1 — Cas test 1. Erreurs relatives L? (gauche) et H' (droite) des trois méthodes,
en fonction de la taille de cellule. Pour les méthodes ¢-FEM, les pointillés correspondent
a 7 et les traits pleins a 3.

Dans un cas pratique ou ’on ne disposerait que d’une distance signée a la frontiere, le
schéma dual serait ainsi plus adapté.

On représente également a la Figure le temps de calcul de chacune des méthodes
en fonction de la taille de cellule (gauche) et de I'erreur relative L? (droite). Cela permet
d’illustrer la différence entre les deux schémas p-FEM due notamment & I'introduction
de la variable auxiliaire p et donc a la résolution d’un systeme de taille plus élevée pour
la version duale. Il est également important de préciser que les implémentations et en
particulier les solveurs utilisés different légerement de par la nécessité de restreindre les
espaces de fonctions pour ¢-FEM dual, ce qui est implémenté a l'aide de la librairie
multiphenicsall]

Enfin, un dernier aspect numérique que ’on choisit de vérifier est le conditionnement
de la matrice éléments finis associée a chacune des méthodes. On représente a la Figure [2.3
les résultats obtenus par les 3 méthodes, illustrant numériquement que le conditionnement
est comme annoncé en théorie (cf. Théoréme d’ordre 2.

Cas test 2 : Solution manufacturée sur un disque. 1l est également intéressant
d’étudier le comportement des différentes méthodes lors de 'utilisation d’éléments finis
de degré plus élevé. Pour cela, on considere la géométrie précédente, cette fois de rayon
v/2/4 et une solution manufacturée donnée par

Uez (2, y) = sin(R(z,y)) x exp(x) x sin(y),

avec R(z,y) = —r? + (z — 0.5)2 + (y — 0.5)% et r = /2/4. On détermine alors f
analytiquement et on impose des conditions homogenes au bord (puisque 4, = 0 sur T').

Dans un premier temps, pour des éléments finis de degré 1, on compare une nouvelle
fois ¢-FEM direct et dual avec Standard-FEM. On compare de plus les trois approches a
la méthode CutFEM implémentée avec le package Python CutFEMx.

1. https://multiphenics.github.io/
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—e— Direct ¢-FEM
—=— Standard FEM
—<— Dual ¢-FEM

—e— Direct ¢-FEM
—=— Standard FEM
—<— Dual ¢-FEM

100 100

— —
2] wn
) )
Q [
S €
£ 5
3 3
[oN o
O O

107! 10-1
6x 1073 10—2 2 x 1072 3x10724x 102 10—4 103
h L? Relative error

FIGURE 2.2 — Cas test 1. Temps de calcul en fonction de la taille de cellule (gauche) et
de Perreur relative L? (droite) des trois méthodes.

—o— Direct ¢-FEM
—=— Standard FEM
—<— Dual ¢-FEM

10

Condition number

FIGURE 2.3 — Cas test 1. Conditionnement des matrices éléments finis associées &
chaque méthode, en fonction de h.

Remarque 2.4. Pour ce cas test, dans le cas d’éléments P!, pour des raisons d’implé-
mentation numérique et une comparaison honnéte entre les différentes méthodes et en
particulier la méthode CutFEM, 'erreur sera calculée différemment de précédemment et
sera donnée par

0.5
(% Zg\il(uew(‘ria yl) - uh,i)2>
0.5
(% sz\;l uex(xia yz)z)

ol (x,y;) sont les coordonnées du neceud ¢ des maillages considérés, et uy, ; la solution de
chaque méthode au méme noeud.

On obtient alors les résultats représentés a la Figure qui confirment les ordres de
convergence annoncés pour chaque méthode. Les résultats obtenus avec les méthodes
CutFEM et la méthode duale p-FEM sont tres proches numériquement, ce qui met en
évidence l'intérét de p-FEM. Celle-ci permet en effet d’obtenir une précision équivalente
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tout en bénéficiant d’'une implémentation nettement plus simple, sans utilisation de
package spécifique.

—e— Direct o-FEM
—=— Standard FEM
—<— Dual ¢-FEM

CutFEM

L? Relative error

2x1072  3x10724x10°%  6x10°2 10!

h

FIGURE 2.4 — Cas test 2. Erreurs relatives L? des méthodes, en fonction de la taille de
cellule.

Pour les éléments finis P?, les erreurs sont calculées selon (2.10)) et (2.11]) sur un

maillage de référence, avec upet = Uer. On représente les résultats obtenus a la Figure
ou 'on observe que les ordres de convergence théoriques sont également atteints (et
mémes dépassés en norme L?) par les deux approches o-FEM, pour du degré k = 2.

1072 1
C— —
102
10 |7
104 1073
104 //

10-°

—e— Direct ¢-FEM —e— Direct p-FEM
—=— Standard FEM 10-5 —=— Standard FEM
—<— Dual p-FEM —<— Dual p-FEM

1071 1071

h h

L? Relative error
H' Relative error

10-¢

1077

FIGURE 2.5 — Cas test 2. Erreurs relatives L? (gauche) et H! (droite) des trois méthodes,
en fonction de la taille de cellule.

Cas test 3 : Une géométrie plus complexe. Pour le troisieme cas test, nous allons
considérer une situation plus complexe, tant pour les méthodes éléments finis classiques
que pour les méthodes non-conformes.

Pour cela, nous considérerons une géométrie définie a partir d’un produit de fonctions

gaussiennes, selon 'expression ({5.3)), présentée en Section
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Uref [luref — Ustall« = 3.69 x 10~ 6 llures — Uy, directllo = 1.49 X 10~ 5 lures — Ugp, duallle« =2.20 X 10~ 5

d 4 4 4

7411 55e-06 11e05 _ 16e-05  2.2e-05
[

0.0e+00 _ 4.8e-03 _ 9.7e-03 _ 15e:02  19e-02  00e+00 _ 9.2e-07 _ 18e-06 _ 2.8e-06  3.7e-06 12e-16 _37e-06 _ 7.5e-06 _1.1e-05  15e05
I B

FIGURE 2.6 — Cas test 3. A gauche : solution de référence. Puis, de gauche & droite :
différence entre la solution de référence et la projection de la solution FEM Standard, de
la solution ¢-FEM direct, et de la solution ¢-FEM duale.

Remarque 2.5 (Construction de maillages sur des géométries complexes). Comme nous
I’avons remarqué en introduction, I'une des principales difficultés des méthodes éléments
finis classiques est la construction de maillages conformes pour des géométries complexes.
Pour construire de tels maillages, notamment a partir de fonctions level-set, nous avons
utilisé le package pymeditﬂ ainsi que Mmgﬂ Plus de détails sur ’approche utilisée et
notamment la correction des noeuds de bord sont proposés a la Section

La solution de référence ainsi que la différence entre les projections sur le maillage de
référence des solutions obtenues avec chaque méthode et la solution de référence sont

représentées & la Figure 2.6

1072

5 5
5] o
v g
5 =
& &
52 1077 5?
S B
—e— Direct p-FEM —e— Direct p-FEM
—=— Standard FEM o —=— Standard FEM
—<— Dual p-FEM —<— Dual p-FEM
10-*
102 102

h h

FIGURE 2.7 — Cas test 3. Erreurs relatives L? (gauche) et H! (droite) des trois méthodes,
en fonction de la taille de cellule.

Les erreurs des méthodes sont ici calculées par rapport a une solution de référence
FEM standard sur un maillage tres fin (h =~ 0.001). Les résultats obtenus pour les deux
schémas ¢-FEM et Standard-FEM sont représentés a la Figure [2.7]

2. https://pypi.org/project/pymedit/
3. https://www.mmgtools.org/
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On observe alors des performances tres proches pour les trois méthodes a taille de cellule
équivalente, chacune suivant les ordres de convergence optimaux en norme L? et en norme
H'. On représente également le temps de calcul en fonction de I'erreur relative L? & la
Figure (gauche) et de Ierreur relative H! (droite), qui illustrent alors que pour une
erreur équivalente, en norme L? comme en norme H!, les résultats sont obtenus bien
plus rapidement pour les deux méthodes p-FEM que pour la méthode standard.

—e— Direct p-FEM
—=— Standard FEM
—<— Dual p-FEM

—e— Direct p-FEM
—=— Standard FEM
—<— Dual p-FEM

100 100

-« 0
) )
[ [
IS IS
= e
3 3
o o
() ()
10! 10-1
10-4 103 102 102 10t
L? Relative error H' Relative error

FIGURE 2.8 — Cas test 3. Temps de calcul en fonction des erreurs relatives L? (gauche)
et H! (droite) des trois méthodes.

Cas test 4 : un cas 3D. Pour terminer les comparaisons entre les 3 méthodes, nous
allons considérer le cas d’une géométrie 3D, donnée par la fonction level-set

o(z,y) = —0.3125% 4 (z — 0.5)2 + (y — 0.5)2 + (2 — 0.5)2,
et une solution manufacturée donnée par

tee (7,y) = 1 — exp(p(z,9)?)

de sorte que ue, = 0 sur I'.

On représente a la Figure la solution de référence (i.e. la solution exacte interpolée
sur un maillage conforme fin) ainsi que la différence entre les projections sur le maillage
de référence des solutions obtenues par chaque méthode et la solution de référence.

Les erreurs en normes relatives L2 et H' sont représentées a la Figure 2.10] ot
’'on observe que la convergence numérique est une nouvelle fois optimale en norme L2.
On observe une sur-convergence également en norme H', puisque les trois méthodes
atteignent un ordre 1.5 en norme relative H'. Cependant, on peut remarquer que dans
cette situation, la méthode duale offre des résultats moins précis que les deux autres
méthodes.
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Uref "uref - Ustd"m =1.49x 1072 "‘-’ref - u(o,direct"°° =6.07 x 1073 "Uref - uqz,dual“m =1.63x1072

-1.7e+00 _-13e+00 _ -8.6e-01 _ -4.3e-01  0.0e+00  00e+00 _37e-:03 _ 7.5e-03 _ 1le-02  15e-02 20e-10 _ 15e-03 _ 3.0e:03 _ 4.6e-03  6.1e-03 2.3e-07 _4.1e-03 _ 8.2e-03  12e-02  16e02
[

FIGURE 2.9 — Cas test 4. A gauche : solution de référence. Puis, de gauche & droite :
différence entre la solution de référence et la projection de la solution FEM Standard, de
la solution ¢-FEM direct, et de la solution p-FEM dual.
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.qéy .g 101

& ks

& 102 &
—e— Direct ¢-FEM —e— Direct ¢-FEM
—=— Standard FEM —=— Standard FEM
—<— Dual ¢-FEM —<— Dual ¢-FEM

3x 1072 4x1072 6x 1072 3x 1072 4x1072 6x 1072

FIGURE 2.10 — Cas test 4. Erreurs relatives L? (gauche) et H' (droite) des trois
méthodes, en fonction de la taille de cellule.

2.2 Traitement des conditions mixtes Dirichlet-Neumann

Nous allons maintenant nous intéresser a un cas plus complexe, impliquant un (ou
des) changement(s) de conditions de bord. Pour cela, on considére la forme générale de
I’équation de Poisson, donnée par

—Au = f, dans Q,
u =0, swwI'p, (2.12)

Vu-n =0, sur 'y,

ou n est la normale unitaire extérieure & un domaine 2, de frontiere I' = I'y UT'p avec
CyNTp=0et feL*N).

Dans cette section, nous allons introduire deux schémas ¢-FEM pour résoudre .
Les deux schémas seront étudiés numériquement sur plusieurs cas test, en comparaison
avec une méthode éléments finis classique.
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Remarque 2.6. Le cas de conditions mixtes Dirichlet-Neumann est particulierement
complexe pour toute méthode non conforme puisque la (ou les) jonction(s) entre la partie
Dirichlet et la partie Neumann de la frontiére peut (peuvent) intervenir a 'intérieur d’une
cellule. Cependant, malgré une complexité plus élevée (autant sur l’aspect théorique que
I’aspect numérique), les méthodes non-conformes ont montré leur efficacité, notamment
CutFEM, comme dans [I7] qui propose des estimations d’erreurs théoriques pour le cas
de I’équation ou [44] qui propose des résultats numériques pour le cas de ’élasticité
linéaire.

Pour le schéma ¢-FEM que nous allons construire, nous allons utiliser le schéma dual
pour imposer les conditions de Dirichlet, et adopter une idée simple : si des cellules
contiennent la jonction entre frontiere Neumann et frontiere Dirichlet, aucune condition
de bord ne sera imposée.

En plus de la fonction level-set ¢ définissant le domaine selon ((1.4)), on introduit une
seconde level-set 1 permettant de séparer la frontiere I en deux parties I'p et 'y,

'p=TN{Y<0} et I'y=TnN{y>0}.

On considére une nouvelle fois la boite O de R avec d = 2,3 telle que 2 C O. On
construit alors les maillages T, et T} selon (L.6) et (1.7) respectivement. On introduit
également les interpolations polynomiales de degré [ > k, de o et i sur T, notées vy, et

Uh.
Les domaines occupés respectivement par 7, et 7? sont une nouvelle fois notés €2y, et
Qg Le maillage 7;LF est alors séparé en deux parties, en utilisant la level-set 1,

Tio = {TeTl n<0sw T} et TV :={TeTl ,>0surT}, (213)

et on note QED , Q}:N les domaines occupés par 771FD et 7;er respectivement.

De plus, il est nécessaire d’ajouter une troisieme partie de frontiere : en effet, on ne
peut pas considérer seulement les cas ou la jonction entre I'y et I'p arrive sur des faces
du maillage ’7? (correspondant a la situation illustrée a la Figure . Il faut aussi
considérer que la jonction peut étre située a l'intérieur d’une cellule du maillage. Dans
cette situation, on choisit de ne pas appliquer de conditions de bord & ces cellules.

On note ’7;?“” =TI\ (FD U 7;LFN ), et le domaine correspondant & ce sous-maillage est
noté Qg““f (cf. Figure (gauche) pour une représentation graphique des différents
sous-maillages). On remarque que

QL =P uQ ™ UQN.

On note Qi = Qh\Q}: et BQZ}'L sa frontiere. Soient 89?’ , 8Q£N et (")Qg“” les frontieres

des domaines QED , QEN et Qg“”f intersectées avec 0€2;,. On remarque alors que
O, = (09,2 N AY,) U (99,1 N ANQ,) U (0N N ONQ,).
Soit également I’ensemble de faces Fi = ]:,5 Py ]:}]LV 5 ou

]-“}1; D= {facette de 7;LFD U ’ELF““ non incluse dans 8Qh} ,
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et
fév 5= {facette de 77;” incluse dans 8(2}1} .

Zj, 7711“1) 7—771' o 7771_' " T 77}"0 771".\ ﬁrm
= === |Interface ]_-]A,\ﬁg }.;,) F¥ }.hr,”,
~ —— I = - - Interface
%4 I
//
/ | [
~
1 | .
/
| 7 |

FIGURE 2.11 — Représentation des cellules et faces des différents sous-maillages dans le
cas ou la jonction entre I'p et I'y se produit dans une cellule. Sur la figure de droite, les
faces en traits pleins correspondent aux faces internes du maillage 7, celles en pointillés
aux faces de bord (i.e. les faces de 0€2y).

Remarque 2.7. Les ensembles .7-",5 D et ]_-}JLV 5 sont les mémes que ceux introduits dans
les précédents schémas p-FEM, a I'exception qu’ils sont restreints aux sous-maillages
correspondant a la partie Dirichlet de la frontiere et a la partie Neumann. Les stabilisations
imposées dans les différents schémas ne sont pas imposées sur les mémes faces : pour
le schéma Dirichlet et on consideére toutes les faces de Qg tandis que pour
Neumann, seulement une partie de ces faces sont considérées. Ainsi, il est important de
stabiliser correctement sur chaque portion de la frontiére. En particulier, dans la situation
de la Figure il est important de noter que la facette ou la jonction entre I'y et I'p
intervient, est considérée comme n’appartenant ni a .7-}1; P nia ]_—]le s,

2.2.1 Présentation des schémas

Pour résoudre , nous proposons 2 méthodes o-FEM différentes. Le premier
schéma suivra 'approche introduite dans [23], rappelée a la Section pour I'imposition
des conditions de Neumann. Le second introduira lui une nouvelle variante permettant
d’imposer les conditions de bord de Neumann.

Premier schéma

Nous allons maintenant construire une combinaison du schéma introduit précédem-
ment pour les conditions de Neumann (voir ((1.19))) et du schéma Dual pour les conditions
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1 1
T . 7711‘/1 . 7711',\ T 7711'11 77[11\
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- T - == Interface
~ 1
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FIGURE 2.12 — Représentation des cellules et faces des différents sous-maillages dans le
cas ou la jonction entre I'p et Iy se produit sur une face de Tj.

de Dirichlet (voir ) Ainsi, on considere u comme 'inconnue primaire sur le domaine
Qy, et on introduit une premiére variable auxiliaire pp sur qu pour imposer les conditions
de Dirichlet, par ’équation

U =@pp, Sur QZD .

Pour imposer les conditions de Neumann, on introduit comme & la Section pour
traiter ([1.13]), une variable auxiliaire y sur Ql,;"’ , telle que y = —Vu. En utilisant une
nouvelle fois que n = V#/|vy| sur I', on obtient

r
y-Vo=—pnp, sur N,
ou py est également une variable auxiliaire sur QEN .
On retrouve finalement les trois équations permettant d’imposer les conditions de
bord
u = pp, Sur QED )
y+Vu=0, sur Q}:N,
yVo+pnvp =0, sur QI,ZN .
Remarque 2.8. On reconnait de maniere évidente les équations introduites pour traiter
les conditions de bord dans les schémas (1.19)) et (2.2). La différence est ici dans les

domaines considérés, puisque les variables auxiliaires sont introduites uniquement sur
une partie de QE

Pour discretiser les différentes Variables on considere alors les espaces éléments finis

v (et @), QP (©5) (ef. [TT). 29 (@F) (ef. @ID) et QL V(@) (cf. (E15))

et on définit
Wi = Vi x Q@) < ZP (@) < QPR
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Le schéma ¢-FEM pour approcher la solution de (2.12)) est finalement donné par :

k k
trouver (up,Ph,D, Yh, Ph,N) € W,E ) tel que, pour tout (v, qn,p; 2h, qh,N) € W,E ),

ouyp,
Vup - Vop, — / 7”}1 + ap(Un; Ph,D; Vhs Gh,D)

Q, 0Q,\0, v ON

+ an (Un, Y, PN Vhs Zhs @h,N ) + Gr(un, vg) = /Q fon +1Up(vn) + In(2n)
h

( )= 2 [ = ponpp) (e = 3 on0)
ap(u ;0 = up — — vp — —
D\Uh,Ph,D; Vh; 4h,D B2 QZD h h $hPh,D h h(,Oth,D

2
+oph /F r AupAvy,
QhDUthnt

an (Uhs Yh, Ph,N'3 Vhs Zhs Qh,N) = / Yn-nup, + %/r (yn + Vur)(zn + Vo)
O n Qfy
'Y 1 1
hg/ (yn - Von + hPh,N%)(% -Vop + EQh,N‘Ph)

+ Yiv /QFN div yp, div zp,

h

Gh(up,vp) == ODhEgrzl:D/ {‘?ZL] [({;Uh:| Yo Z / [(Mh} {(%h] ’

ZD(Uh) = —JDhQ/ fAUh,

r Trn
Q,Puq, nt
et
In(2n) = %zw/r fdiv 2.
QN

Remarque 2.9 (Conditions non homogenes). Dans le cas de conditions de Dirichlet ou de
Neumann non homogenes, on appliquera le méme principe que dans les Remarques
et en adaptant les domaines considérés a Ql,:D et Q};N .

Second schéma

Présentons maintenant un second schéma p-FEM. Ici, les conditions de Dirichlet
seront traitées de la méme facon, c’est-a-dire via une variable pp telle que u = ppp sur
Q}:D. De plus, on définit comme précédemment les maillages Tp,, 771FD et 7;{” ainsi que
les domaines €2y, QED et QEN.

Soient également .F,iv I’ensemble des facettes de ’7;LFN , ainsi que ]-",{bv S et ]-",1; P définis
comme précédemment. Soient p; et pa définis sur Q}:N et considérons

u(p1,p2) =p1+¢(g— Vp1 - Vo +pap) sur QZN .
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On remarque que
91(p1, p2)
on

De plus, u peut s’écrire sous la forme p; + (g — Vp1 - Vo + payp) avec p1 = u et
_ Ty R

p2 = p. On cherchera donc uy, sous cette forme sur €2,V par pénalisation.
On introduit alors les espaces éléments finis, comme considérés précédemment : u

(%)

sera discrétisée dans V)"’ et pp dans Qhk (QFD) Finalement, les variables p; et py seront

elles discrétisées dans @ ngrl)(QFN) et @ k)(QrN)
Soit

=g sur ['y.

Wi = Vi x QP (@2) x QPO < QP ().

Le schéma est alors donné par : trouver (upn,ph.p,Ph,1,Ph2) € W,Ek) tel que

_ 1 ~ ~
o Vuy, - Vo, — / . Vauy, - nvp, — /(99Duaﬂfm Vuy, - noy, +’yﬁ /FN (up, — up) (v — vp)
Z / Vay, - n][Voy, - n —1—7/ (div(Vay) + fr)div(Vuy)
FeFrl
YD 1 1
+onh > / Vup, - n][Vuy - n] + w2 /F (up — 7,PhPh.D ~ up)(vp — ﬁ‘Pth,D)
N,
Fer,'s
+oph Z / Vup - n [Vvh n] + ’th / A’U,h + fh)A’Uh = /Q fnon,
FeFLP "

k
V(’Um(Jh,D,Qh,l,qh,Q) € W,E )’

Up = ph1 + ©n(gn — VPn1 - Vou + praen),

et
Op = qna1 + en(=Van1 - Von + qnaen).

Dans la suite de cette section, cette version de ¢-FEM sera notée p-FEM-2.

Remarque 2.10. L’avantage de cette version du schéma est l'absence de la variable
vectorielle y. Cependant, en contrepartie, on trouve maintenant une variable p; discrétisée
dans un espace de degré k4 1. De plus, ce schéma nécessite plus de termes de stabilisation
ainsi qu’un parametre de stabilisation supplémentaire.

2.2.2 Reésultats numériques

Nous allons maintenant étudier numériquement les deux schémas proposés précédem-
ment. Pour cela nous allons considérer différentes situations. Dans un premier temps, le
cas le plus simple sans jonction entre les frontiéres I'p et I'y sera étudié. Dans ce cas,
la solution ne présentera pas de singularité. Dans un second temps, nous considérerons
un premier cas présentant deux singularités de changement de conditions de bord, avec
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le cas d’un carré tourné. Enfin, nous terminerons cette étude avec le cas d’un disque
présentant également deux singularités.
Les trois situations sont représentées a la Figure 2.13]

FIGURE 2.13 — Représentation des géométries considérées pour les cas test numériques.
Gauche : cas test 1. Centre : cas test 2. Droite : cas test 3.

Les erreurs seront calculées selon les normes relatives L? (2.10) et H' (2.11]), avec
une solution de référence éléments finis classique, en utilisant un maillage de référence
avec une taille de cellule A ~ 0.0008.

Cas test 1 : une solution réguliére. Considérons une situation ou la solution
considérée ne présente pas de singularité, i.e. un cas ot u € H?(Q). Pour cela, on
choisit une géométrie sans jonction entre la frontiére Dirichlet et la frontiére Neumann,
représentée a la Figure (gauche). Le domaine est donné par la fonction level-set

e(@,y) = p1(z,y) x p2(z,y) avec
o1(z,y) = —0.391%2 + (z — 0.5)2 + (y — 0.5)?,
po(z,y) = —0.14312 + (x — 0.5)2 + (y — 0.5)2.

Le terme source de (2.12)) est donné par f = —1. Enfin, pour détecter le changement
de conditions de bord, la fonction level-set 1 est donnée par

Y(z,y) = 0.25% — (z — 0.5)> — (y — 0.5)2.

Les erreurs en norme L? et H' sont données & la Figure Pour les trois méthodes
considérées, on retrouve ici les ordres optimaux de convergence (les ordres attendus
sont de 2 pour lerreur L? et 1 pour Uerreur H!, puisque la solution ne présente pas de

singularité), pour les erreurs relatives L? et H'. Les ordres de convergence sont indiqués
dans la Table 211

| Optimal | -FEM | Std FEM | o-FEM-2 |
2 2.2 2.04 2.17

Erreur L2

Erreur H! 1 1.31 1.32 1.31

TABLE 2.1 — Cas test 1. Ordres de convergence.
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FIGURE 2.14 — Cas test 1. Erreurs relatives L? (gauche) et H' (droite) en I’absence de
singularité.

Cas test 2 : singularité sur un carré tourné. Pour le second cas test, la géométrie
considérée sera un carré centré au point (0.5,0.5) de c6té 0.5 tourné d’un angle /6. La

situation considérée est représentée a la Figure (centre).
Pour décrire cette géométrie, nous utiliserons une premiére fonction level-set qui permettra

de sélectionner les cellules, définie par

Sol (ZU, y) = max ’R(wo,yo,e)(x7 y) - 05‘ - 0257

ot Rz, .40,0) st la matrice de rotation centrée en (z9,yo), d’angle 0.
Dans les calculs, on choisira une level-set plus lisse, donnée par

p2(z,y) = —((xr — 0.5) — 0.25) x ((xg — 0.5) + 0.25)
x ((yr — 0.5) — 0.25) x ((yg — 0.5) 4 0.25),

(xR7 yR) = R(xo,yo,a) (.1'7 y) °

Les résultats des 3 méthodes sont représentés a la Figure [2.15] et les ordres de conver-
gence a la Table ol 'on remarque que les 3 méthodes convergent de maniére optimale
en norme L? comme en norme H'. On observe notamment un ordre de convergence plus
élevé pour les deux schémas p-FEM que pour la méthode standard, en particulier en

norme L2
| Optimal | o-FEM | Std FEM | o-FEM-2 |

1 1.19 1.09 1.27
0.5 0.56 0.56 0.56

Erreur L2
Erreur H!

TABLE 2.2 — Cas test 2. Ordres de convergence des méthodes.
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FIGURE 2.15 — Cas test 2. Erreurs relatives L2 et H! en fonction de h.

Cas test 3 : singularités sur un disque. Nous allons maintenant considérer le cas
d’un disque centré en (0.5,0.5) de rayon 0.3125, avec une frontiere I" divisée en I'p et 'y
comme représenté a la Figure (droite), a l'aide de la level-set ¥ (x,y) =  — 0.5.

Dans les résultats qui suivent, nous allons distinguer deux cas : le premier cas sera
obtenu lorsque l'interface entre la partie Neumann et la partie Dirichlet se produit sur
un noeud du maillage standard (analogue a la situation ou elle se produit sur une face du
maillage o-FEM). Cette situation correspondra a la dénomination matching. Le second
cas, moins artificiel sera le cas ou cette jonction se produit sur une face du maillage
standard (considéré analogue a la situation ou la jonction se fait a 'intérieur d’une cellule
du maillage o-FEM), que 'on appellera not matching.

Les résultats obtenus dans le cas matching sont représentés a la Figure 2.16]; dans
la situation not matching, a la Figure Les ordres de convergence sont indiqués
dans la Table [2:3] pour les deux situations. Dans les deux situations, on observe sur
les résultats que les trois méthodes vérifient numériquement les ordres optimaux de
convergence : les erreurs L? sont d’ordre h et les erreurs H' d’ordre h'/2. En particulier,
on observe que les deux schémas o-FEM donnent de meilleurs résultats en norme L? que
la méthode standard. En ce qui concerne la norme H', il est intéressant de noter que les
trois méthodes donnent des résultats trés comparables.

Matching | Optimal | ¢-FEM | Standard FEM | o-FEM-2
Erreur L? 1 0.98 1.08 1.06
Erreur H! 0.5 0.5 0.55 0.5

Not Matching | Optimal | o-FEM | Standard FEM | ¢p-FEM-2
Erreur L? 1 1.19 0.98 1.02
Erreur H! 0.5 0.49 0.51 0.49

TABLE 2.3 — Cas test 3. Ordres de convergence des méthodes, dans les deux situations
considérées.
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FIGURE 2.16 — Cas test 3. Erreur relative L? (gauche) et erreur relative H' (droite) en
fonction de h, pour une interface matching.

102

H' Relative error

L? Relative error
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2x1072  3x10724x 1072

FIGURE 2.17 — Cas test 3. Erreur relative L? (gauche) et erreur relative H' (droite) en
fonction de h, pour une interface not matching.

2.3 -FEM pour I’équation de la chaleur

Nous allons maintenant considérer une équation parabolique dépendant du temps,
I’équation de la chaleur avec des conditions de Dirichlet au bord, donnée par

Ou —Au = f, dans Q x (0,7,
u =0, surI'x (0,7), (2.14)

Ujt=0 =Y, sur €,

avec T' > 0.
La premiere partie de cette section, sera consacrée a la présentation d’un schéma

©-FEM pour la résolution de cette équation. Dans la seconde partie, nous proposerons
I’analyse théorique de ce schéma. Nous énoncerons alors des estimations d’erreur a priori
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pour les normes [?(H') et [°°(L?). La troisitme partie sera finalement consacrée a 1’étude
numérique de ce schéma.
Les résultats présentés dans cette section ont été introduits dans [22] 27].

2.3.1 Construction du schéma

Soient T, et ’771F définis par et respectivement. Soit également .7-“,1; donné
par . Soit un temps final 7" > 0. On introduit une partition uniforme de I'intervalle
[0,7] en temps t,, n =0,...,N tels que t, = nAt et ty =T.

Pour construire le schéma ¢-FEM, nous allons suivre 'idée présentée a la Section
pour le cas de I’équation . Cependant, cette fois, nous introduirons une nouvelle
inconnue w = w(z,t), au lieu de seulement w = w(x). Ainsi, nous pourrons poser v = @w
de sorte que les conditions de Dirichlet v = 0 soient automatiquement satisfaites au bord.

La discrétisation en temps de (2.14)) sera faite en utilisant un schéma d’Euler implicite.
Les évaluations aux temps t,, des fonctions seront notées f"(-) = f(-,t,). Ainsi, cela nous
permet d’obtenir la discrétisation en temps suivante : pour v = pw™ donné, trouver
u" ! = ot qui vérifie

n

w — QW
P A = (215)

)

Pour la discrétisation en espace, on considere ’espace éléments finis de degré k, V(k
(défini par (1.9))), pour k > 1.

On suppose que les fonctions f et u° sont définies sur ;. On rappelle que ¢, est
I’interpolation de ¢ dans Vh(l), pour ! > k. Le schéma ¢-FEM pour résoudre est

alors : trouver w"'H € Vh( ) = 0,1,..., N — 1 tel que pour tout vy, € Vh(k)

’U)n+1 . 8 .
/ SohAZ @hvh+/ V(ppwptt) - V(@hvh)*/ %(‘Phwh+1)@hvh

o (15 2] 5 [ (S5 ) s
:/ (At +f”+1> @nvn, — oph? KZ;F/ ( +f"+1> A(pnpvn), (2.16)

(k)

ou uy = gohwh pour n > 1 et uh €V, est l'interpolation de ul.

Dans , on retrouve les termes de stabilisation introduits précédemment : la
pénalisation fantérne (la somme sur les facettes de ;) comme introduite dans [I2], et la
stabilisation d’ordre 2 (les termes multipliés par oph?) qui renforce sur les cellules
de T}

Remarque 2.11. Le schéma peut étre adapté sans difficulté au cas de conditions de Dirichlet
non homogenes u = up sur I' x (0, 7). Il suffit alors de considérer uj = ppwj + Inug(-,ty)

avec uy un prolongement de up de I' a €, et I;, un interpolant sur Vh(k), comme pour le
schéma ([1.10]). Effectuer les modifications appropriées au schéma (2.16|) (i.e. remplacer
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gpthH par cphwh+ + Ipug (-, the1)) introduit alors des termes supplémentaires qui sont
tous ajoutés au second membre.

2.3.2 Analyse théorique

Commengons par énoncer le théoreme de convergence :

Théoréme 2.3 (cf. [27, Théoréme 1]). Supposons que Q C Qp,, 1 >k, f € HY(0,T; H*1(Qy))
et uw € H?(0,T; H*=1(Q)) est la solution ezacte (2.14)). De plus, on suppose que u™(-) =
u(-,t,) et wy sont les solutions de pourn=1,...,N. Enfin, on suppose que les
Hypotheses sont vérifiées. Alors, pour op suffisamment grand, il existe ¢ > 0
dépendant seulement de la régularité de Ty et des constantes des Hypothéses|2.1.1

et C > 0 dépendant en plus de T, telles que si At > ch? alors

N 3
(Z Atlu" — @hwﬁﬁfl(g)) < Cllu’ —ud |l z2qy)

+ C(h* + At) (||UHH2(0,T;Hk—1(Q)) + Hf”Hl(o,T;Hk—l(Qh)))

et

0 0
max [0~ onup 2oy < Clla® = uf 20,

1
+ (2 + A1) (lull ooz + 1l oz c@n) ) -

Remarque 2.12. Si k = 1, les normes majorantes des estimations précédentes peuvent étre
remplacées par la norme de f sur H'(0,7; L?(Q)). En effet, puisque Q C €y, 'hypothése
sur f implique que u € H2(0,T; L*(2)) N HY(0,T; H?(2)), c.f [33, Théorémes 5 et 6,
Chapitre 7.1]. Cependant, imposer cette régularité de u sur € ne suffit pas a controler
Pextension de f sur Q \ , ainsi il est nécessaire d’imposer la régularité sur €, a la
différence des estimations a priori classiques des méthodes éléments finis standards (c.f.
par exemple [85]).

Avant de démontrer le Théoreme [2.3] il est nécessaire de rappeler plusieurs résultats
de [28] pour résoudre ([1.1).

Lemme 2.6 (cf. [28, Lemme 3.7]). On considére la forme bilinéaire

ZZH }+ ) aDh2/ AuAv.

ap(u,v) = Vu- Vv — auv +oph Z /
EeF} KeTl

Q a0, On

Pour op assez grand, il existe une constante a > 0 indépendante de h telle que

k
an(PnVhs PrUR) = 04|<thh\fql(ﬂh), Yoy, € Vh( ),
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Lemme 2.7 (cf. [28, Théoréme 2.3]). Pour toute fonction f € H*=1(Qy), soit wy, € Vh(k)
la solution de

an(@nwn, enon) / fonvn —oph® > / fA(pnon)

KeTF
et soit u € H*(Q) la solution de
—Au=f dansQ, u=0 surl
étendue a @ € HFTY(Qy,) telle que u = i sur Q et

all a1 () < Cllullgrer) < Cllf e,

Pour op assez grand, il existe une constante C' > 0 indépendante de h telle que

~ ~ 1
i — onwnlmi(a,) < CHFIfllge-1i0,) et 1@ — onwnllza,) < CR*V2| fllgr-1(,)-

Il est également nécessaire d’introduire le résultat suivant :

(k)

Lemme 2.8. Pour tout v, € V)", il existe une constante Cp > 0 telle que

nghvhHLQ(Qh) < CP’QOh'Uh|H1(Qh).
Preuve. Soit Q = {5 < 0}. En utilisant Iinégalité de Poincaré,
lenvnll 2,y < Cdiam () @nvnl g, )

et diam(€2,) < diam(O).
De plus, par [28, Lemme 3.4],

lenvnll 20, < lenvnllzzary < Chlonvnlgqry,

ot O} est le domaine occupé par 7,1 (définis par (1.7)).
En notant Q2 C Q, U Q}FZ, on obtient le résultat désiré. O

Preuve du Théoréme 2.3 11 existe une extension @ € H2(0,T; H*=1(,)), de u & Qp,
telle que

NGl 20,7151 (0 )) < Cllull g2, m%1(0))- (2.17)
Soit w} la solution obtenue par le schéma ¢-FEM - qui peut étre réécrit sous la
forme

w — n+1 — wn
oL A " onon + an(enwl ™, pvn) — UDh2 / on——— A(ppup)
On t KeTF

= /Q ) Fopon— Y oph® /K S A (ppun)  (2.18)

KeTF
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pour n > 1 ou gohwh sera remplacé par uh pour n = 0.
A chaque temps t € [0, 7], on introduit @y, (-,t) = @y, € Vh(k)

ou f est remplacé par f — Oyt évalué a chaque temps t :

, comme dans le Lemme

n(onin pnin) = [ (7= dignon —ooh® 3 [ (f—0mAGpw). (219

KeTl

Soient Wy = wp(ty,) et e} = goh( — wh) pour n > 1 avec €y = u)) — ppY.

On considere la différence entre et (| au temps t, 11, et on obtient

n+1

eptt —ef o [ e —e
/ g Pron T an(ep L onn) = > oph / A(pnvn)
Q t - K At
KeT}

. ot — @
= /Q (@un“ - %W) non
h

~7’L+1 wn
- UDh / (&tmﬂ Ath> A(pnvp).
KeT!

En prenant vy, = wZH wZH ie. ppup = eZH et en combinant ’égalité

+1 +1 2
g2 on il e Iza@ — lehlzz,) + ek — eRlzz,)
len ”L2(Qh) (en en” rzq,) = B )

et les estimations des termes du second membre (avec les inégalités de Cauchy-Schwarz
et inverse : ||AeZ+1||L2 < Ch™ 2||eZH||L2 )), on obtient

()

1 1

ey ™ 17200,y — lerlZog,y +llen™ —eillZan,y) ——

DAL +an(ey ey )

(1)
6nJrl en 3 ,U~Jn+1 — o
- cr/r)112/F hTthAeZH C Ha i @hhTh e ™ 122 () -
2, L2(Q)
(I1T)

(2.20)

D’apres le lemme de coercivité [2.6, on peut minorer (I) par a\eﬁ“]%{l(ﬂh). En utilisant
I'inégalité de Young (pour € > O) et I'inégalité inverse HA%HHLZ < C[hfl\eZ'HIHl(T)

+12 oph? +1 2 6UDC] +12
(D)= (1) > alef; Minga = 5iagellen™ = eiliaap = 5 1l inap
3 1
> ayen+1|fql @) ~ 2At”en+1_€z”%2(95)’ (2.21)
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ol € est choisi tel que ecpC?/2 = a/4 et ot 'on suppose que oph?/(eAt) < 1. Cela nous
permet de controler le terme négatif de (2.21)) avec le terme similaire positif de ([2.20]).
On obtient alors la contrainte At > ch? ot ¢ = op/e.

On considére maintenant le terme (I17) de . Par inégalité triangulaire,

41 - - -
Hatanﬂ _ @thJr — wy < lla,amtt — @t — "
At e At e
antl _ gn ’LZ)nJrl o
+ — 2 b (2.22)
At At L2(@y)
Par le théoréme de Taylor avec reste intégral,
1 1 tn+1
() = @) — Atda () —/ Buii(t, ) (tn — ) d 2.
tn
Ainsi,
~n+1 _ ~n 1 tnt1
Hata”“ _ 4 S / Bt )(tn —t) dt
At L2(0) At || /g, L2(,)
< VAU O 2t 104 1:22(20)) -
Dériver —Au = f — Oyu et (2.19)) en temps, entraine alors, par le Lemme
N _ 1 -
10:((t) — entin) (t) | 2(0y) < CHFT2][(Oef — 0utt) (8)[| g1y -
Alors, pour le second terme de ([2.22)), on obtient finalement
antt —an WPt — 1| ftntr N
—on T o) — pnine ) e
At At L2@) At || J, L2(Q)
Chk+%

< AL 10 f — Oetill L2, 01 sHF -1 (021)-

En utilisant toutes les estimations et en appliquant I'inégalité de Young avec § > 0 ainsi
que l'inégalité de Poincaré du Lemme [2.8

C ~ h2k+1 ~
() < 5 <At”‘9tt““2i2<tn,tn+1;L2<ﬂh)>+At 101 —att“H%2(tn,tn+1;m-l<ﬂh))>

5C2%
+TP’€h+1ﬁIl(Qh)- (2.23)

En remplacant (2.21)) et (2.23)) dans (2.20]) et en prenant ¢ tel que JC% = a/2, on obtient

llep 2 — llepll?
€nllL2(p) CpllLz,) @) pa1p0
2At + 5 eh ‘Hl(ﬂh)
) h2k+1 )
<C (At”8ttu||LQ(tn,tn+1§L2(Qh)) + Tt”atf - 8tf“||L2(tn,tn+1;H’“1(Qh))> ’
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ce qui, multiplié par 2At et sommé sur ’ensemble des n = 0,..., N — 1, donne

N
||ehNH%2(Qh) +aAtY e,

n=1

< llehllZz(a,) + CALC10utl 20 rir2(ayy) + P20 = Butl T2 1100

Alors, en observant que la somme peut étre arrétée pour tout n < IV,

=1l,...

N 3
2
max lenll2,) + (At; €Z|H1(Qh)>
- 1 -
< Cleplrz@, +C (AtHattuHL2(0,T;L2(Qh)) + hFTE |0 f — 8zttu||L2(0,T;Hk—1(Qh))) -
Le Lemme appliqué a —Au = f — dyu dans ) au temps t,, donne alors

max ||@" — @nip || 120, < CHEV2(|F = Oyl ooy, me-1 ()

n=0,...,

N 2
(At > lat - SOth%{l(Qh)) < ChH||f = dvitll o), -1 ()

n=1

En particulier,

lepllz2,) < lu” = upllz2i,) + 1u® — enipllr2 (o)
0_,0 k+1/2 .
< u® = ufll 20,y + CHFY2| £ = dyitll oo 77,601 (o))
Cela combiné avec la régularité de f et de @, cf. (2.17]), ainsi qu’avec la majoration

|- lleqom,y < Cll - g,y (ou C dépend de T') nous donne finalement le résultat
annonceé. O

2.3.3 Résultats numériques

Dans cette partie, nous allons valider numériquement les performances de notre
méthode sur deux cas testlﬂ Les implémentations sont faites avec FEniCS [2]. Les codes
python des simulations sont disponibles dans le repository Github

https://github.com/PhiFEM/publication_Heat-Equation_fenics

Dans les simulations suivantes, si la convergence espérée est d’ordre C1h?P + CoAt™,
nous fixerons At = h?/™ de sorte qu'il soit suffisant d’observer si erreur est d’ordre hP.

Remarque 2.13 (Normes utilisées pendant les simulations). Pour illustrer la convergence
des méthodes, nous considérerons les normes suivantes :

2
Huh - Uref“l?(O,T,Hé(Qref)) N ZnN:O At eref |Vuh(., tn) - Vuref(., tn)’2d$
”uref|’l22(0,T,Hé(Qref)) ZnN:o At fﬂref |VUref(-, tn) |2de‘

4. Pour le premier cas test, nous utiliserons le solveur linéaire par défaut de FEniCS. Pour le second,
le solveur linéaire GMRES sera utilisé, combiné au préconditionneur hypre _amg.

)
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et
h = Ureflljoo (0.7, L2(Qyer maxn=o,...,.N Jo. \Un{-;ln) — Uref(-, In x
Ju U“Z(,,(Q))N fref( (-rtn) (tn))d
“uref“l2°°(0,T,L2(Qref)) maxn=o,...,N eref (Uref(-a tn))2dx

I

ot1 'on note uj, une approximation de la projection orthogonale L? de la solution calculée,
sur un maillage de référence T, du domaine Qe et urer la solution de référence.

FIGURE 2.18 — Cas test 1. Gauche : domaine considéré. Centre : maillage conforme
pour FEM standard. Droite : maillage cartésien uniforme pour ¢-FEM (73).

Premier cas test : solution manufacturée. Pour ce premier cas test, nous
considérons un domaine simple : le cercle centré en (0,0), de rayon 1, comme représenté
a la Figure [2.18] La fonction level-set ¢ est donnée en utilisant I’équation d’un cercle, i.e.
o(z,y) = —1 + 22 4 y%. Son approximation ¢, est I'interpolation de ¢ avec des éléments
finis P11, hormis pour les résultats présentés a la Figure. (droite).

La solution manufacturée u,s = cos (%7’[‘(.’132 + yz)) exp(z)sin(t) est telle que uyer

vérifie uget(t = 0) = ul; = 0 et uwer = 0 sur I' x (0, 7). Ici, le maillage de référence sera
le maillage considéré a chaque résolution p-FEM et FEM standard (i.e. il n’y a pas
d’interpolation sur un maillage plus fin pour le calcul de lerreur).

Uref Ustd Uzp

-1.3e15  3.2e-01  65e01  9.7e-01  13e+00  -4.3e-16 _ 32e-01  6.5e-01  9.7e-01  1.3e+00  -19e-01  18e-01  5.5e-0L  9.2e-01  1.3e+00  -7.8e-04 3201 _ 6.5e-0L  9.7e-01  13e+00

FIGURE 2.19 — Cas test 1. Représentations des solutions au temps final. De gauche a
droite : solution de référence FEM standard, solution FEM standard, solution o-FEM,
projection de la solution ¢-FEM sur le maillage de référence.
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On représente & la Figure 2.19] uyes calculée sur un maillage fin, au temps final, ainsi
qu’une solution éléments finis et une solution py-FEM toutes deux au temps final. On
représente également la projection de la solution ¢p-FEM sur un maillage fin conforme.

—e— o-FEM
—=— Standard FEM

—e— o-FEM
—=— Standard FEM

107!

o
|
-
o
©

[laver—unll2 1
HurcfH[Z(Hl)

[[arer—anll2 g1y
[luret le(Hl)

10-°

1074

FIGURE 2.20 — Cas test 1. Erreurs relatives [?(0,7; H'(Q)) en fonction de h pour des
éléments finis Py et At = h (gauche) et Py avec At = h? (droite).

1071

—— ,-FEM

0!t —e— o-FEM
—=— Standard FEM

—=— Standard FEM

1072

103 = £
A 1o A

10-1

maxy; [[urer (£:) 0.0

maxy; |[uer (i) —un (t:) oo

h

FIGURE 2.21 — Cas test 1. Erreurs relatives 1°°(0,7; L?(2)) en fonction de h pour des
éléments finis Py et At = h? (gauche) et Py avec At = h? (droite).

On représente 'erreur en norme [2(H') A la Figure et en norme [*°(L?) sur la
Figure dans les deux cas pour des éléments finis Py et Py (k=1 et k = 2).
Les résultats numériques correspondent bien a ’ordre de convergence théorique annoncé
dans le Théoreme [2.3]et se comportent méme mieux puisque I’on observe des convergences
d’ordre 2 et 3 en norme [°°(L?) au lieu de 1.5 et 2.5 respectivement. Il est intéressant de
remarquer que la contrainte théorique At > ch? n’est pas satisfaite pour les éléments finis
P2, ce qui n’affecte pas la convergence numérique. On représente également les erreurs
en normes [2(H') et [°°(L?) en fonction du temps de calcul (ici, la somme du temps
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d’assemblage de la matrice éléments finis et du temps de résolution du systéme linéaire a
chaque pas de temps, sans prendre en compte les temps de construction des maillages)
a la Figure 2.22] On observe alors que ¢-FEM est significativement plus rapide qu’une
méthode éléments finis classique pour obtenir une solution a seuil d’erreur fixé.

B —— -FEM
" —=— Standard FEM

—— o-FEM
—#— Standard FEM

_
9

lares—unlli2 1,
HurofH])(Hl)

10-3

Sk
e
=2

104
102 101 10° 10!

102 10! 10°
Computation time (s)

Computation time (s)

FIGURE 2.22 — Cas test 1. Erreurs relatives 1?(0,T; H'(2)) avec At = h (gauche) et
1°°(0,T; L*(Q2)) avec At = h? (droite) en fonction du temps de calcul.

La Figure m (gauche), représente I'erreur I2(H1') et la Figure (droite) lerreur
[°°(L?), dans les deux cas en fonction du parameétre de stabilisation op. Cela permet
d’illustrer I'influence de op sur la stabilité de 'erreur, ainsi que de valider le choix de la

valeur op = 1 dans les autres simulations.

—— h~053 —— h~006_¢——— 9

100 —®— h=0.26 —— h=0.03
—— h=~0.13

l—/

—— h~053 —+— h~0.06

0
07— h=026 —— h~003
—— h=0.13

=]

102 \_,ff””/”x
104

10* 107! 10° 10!

107! 100 10! 10% 10% 10? 10% 10*

FIGURE 2.23 — Cas test 1. Gauche : Erreurs relatives [2(0,T; H(9)) en fonction de op
différentes tailles de maillage h, avec At = h. Droite : Erreurs relatives [*°(0, T; L?(£2))

en fonction de op, avec At = hZ.

Enfin, la Figure[2.24] permet de justifier le choix du degré d’interpolation de ¢ puisque
dans 'analyse théorique, Py est suffisant, mais on observe que l'erreur de la méthode est
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plus faible pour | = 2. Ici, puisque l'interpolation est exacte a partir de [ = 2, il n’est pas
nécessaire de comparer les résultats avec un plus haut degré d’interpolation de .

1071

I BE
Sy ==
| Jls 1072
=|s A3
v )=
3|3 e
Elm 213
g7 1078 ]
10~
101
1071 10-1
h h

FIGURE 2.24 — Cas test 1. Erreurs relatives 12(0,T; H'(2)) en fonction de h pour
différentes valeurs de [, At = h (gauche) et erreurs relatives [*°(0, T; L%(Q)) avec At = h?
(droite).

Second cas test : terme source donné. On considére maintenant un cas test plus
réaliste ou I'on applique un terme source connu et cherche a déterminer la distribution
de la chaleur dans le domaine considéré. Plus précisément, on impose u = 0 sur I' x
(0,T). La condition initiale est donnée par v’ = 0 dans Q on définit un terme source
f(z,y,2,t) = exp (—(x_“1)2+(y;522)2+(z_“3)2) pour tout (z,y,z,t) € Q x (0,T), avec
(w1, po, p3, o0) = (0.2,0.3, —0.1,0.2%). Le temps final est fixé a T = 1.

De plus, pour ce cas test le domaine considéré sera un domaine 3D plus complexe, issu

de [13], donné par

11 2 9 9
r—x)” +(y—yk)” + (2 — 2
90(337y7z):$2+y2+22_T8_AZeXp <_( ) ( 2 ) ( ) ) )
k=0
ou
2k 2k
(xkayszk)::})g(QCOS(571—),25111(57-[-)71), 0<k<4,

(Tk, Yk, 2k) = % (2008((2(k_?_1)7r> ,281n<(2(k_5)_1)7r> ,—1) , 5<k<09,

(®k, Yrs 26) = (0,0,70) , k=10,
(T, Yk, 21) = (0,0, —710) , k=11,

avec rg = 0.6, c = 0.3 et A =1.5.
Le domaine et des exemples de maillages (Standard-FEM et ¢-FEM) construits sont

représentés a la Figure



2.4. RESOLUTION DE PROBLEMES D’ELASTICITE LINEAIRE 53
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FIGURE 2.25 — Cas test 2. Gauche : domaine considéré. Centre : maillage conforme
standard FEM. Droite : maillage uniforme cartésien 73 pour ¢-FEM.

Ici, on notera wu,et la solution obtenue par Standard-FEM sur un maillage conforme
tres fin 7o du domaine de référence €),or. En particulier, on introduit une partition de
Iintervalle [0,7] en pas de temps 0 = tiff < #i¢f < ... < ¢%f = T avec #1*f = nApe
et Atref = hféfm , Ol h.er est la taille de cellules de T.er. Ainsi, dans les simulations,
chaque discrétisation est construite de sorte que {tn}nzo,..., N Soit un sous-ensemble de

tref} )
{ " Jp=0,.,M

On représente a la Figure Uref, aul temps final, ainsi qu'une solution éléments finis et
une solution p-FEM toutes deux au temps final. On représente également la projection
de la solution ¢-FEM sur un maillage fin.

Pour la Figure on considere des éléments finis P; (k = 1), et @}, est 'interpolation
Py de ¢ (I = 2). On compare les erreurs relatives en normes [?(H'), [°°(L?) entre les
solutions du schéma ¢-FEM et les solutions avec FEM classique. Dans ce cas
également, les résultats numériques correspondent aux résultats théoriques énoncés dans

le Théoréme c’est-a-dire, 'ordre 1 pour la norme I2(H') et I'ordre 2 pour la norme
1°(L?).

2.4 Reésolution de problemes d’élasticité linéaire

Dans cette section, nous allons introduire plusieurs schémas p-FEM permettant de
résoudre différents problemes d’élasticité linéaire. Dans un premier temps, nous
considérerons un probleme générique d’élasticité linéaire avec des conditions de Dirichlet
ou mixtes de Dirichlet/Neumann. Ensuite, nous verrons comment résoudre un probléme
d’élasticité impliquant plusieurs matériaux, dans le cas de problemes avec interface. Nous
traiterons également le cas de matériaux élastiques contenant une fracture. Ces résultats
ont fait 'objet de la publication [22]. Enfin, nous proposerons de nouveaux résultats
numériques illustrant 'intérét de notre approche dans le cas de problemes plus réalistes
pouvant notamment présenter des singularités.
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—e— o-FEM
—=— Standard FEM

—e— o-FEM
—=— Standard FEM

100 6x 1072 101 2x 107!

FIGURE 2.26 — Cas test 2. Erreurs relatives 12(0,T; H'(f2)) en fonction de h avec At = h
(gauche) et erreurs relatives [°°(0,T; L?(£2)) en fonction de h, avec At = h? (droite).
uw ﬂuw

Uref Ustd

-38e:04  10e-02  21e-02 32002  4.2e-02

5.3e-03 __6.7e-03 _19e-02 _ 3.0e-02  4.2e-02
[

-11e-07  11e-02  21e02  3.2e-02  43e-02  -14e-07  1le-02  21e02  3.2e-02  4.2e-02

FIGURE 2.27 — Cas test 2. Représentation des solutions du cas test 2 au temps final.
De gauche a Droite : solution de référence, solution FEM standard, solution ¢o-FEM et

solution ¢ projetée sur le maillage de référence.

L’élasticité linéaire avec conditions Dirichlet et mixtes

24.1
Dirichlet /Neumann

Considérons premierement le cas de I’élasticité linéaire statique pour des matériaux
homogenes et isotropes. Le probléme consiste & trouver un déplacement u € R? pour un
déplacement donné w¥ sur I'p (conditions de Dirichlet), une traction g sur I'y (conditions

de Neumann) et une force interne f dans 2, vérifiant

dive(u)+ f =0, dans Q,
u =u9, surI'p, (2.24)
o(u)-n =g, sur 'y,

ou le tenseur des contraintes o (u) est donné par

o(u) =2pe(u) + A(divu)l,
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avec g(u) = 1(Vu + Vul) le tenseur de déformation et les paramétres de Lamé A et p
dépendant du module de Young FE et du coefficient de Poisson v,

Ev
M:met/\:(lqtu)(l—%/)‘ (2.25)

Rappelons premiérement la formulation faible associée a ’équation (2.24]). Pour cela,
on suit 'approche classique : on multiplie I’équation par une fonction test v et on integre
par parties sur 2. On cherche alors le champ de vecteur w dans €2 vérifiant u|p, = u9 et

/U(u):Vv:/f-v+/ g-v, VYo dans Q tel que v|r, = 0.
Q Q I'n

Cette formulation sera utilisée pour construire les schémas éléments finis classiques
utilisés dans les simulations numériques de cette section.

Une fois de plus, on considere le cas ou {2 est inscrit dans une boite O, couverte par
le maillage 7;°. De plus, on construit les maillages Ty, (c.f. (L.6)) et 7,1 (c.f. (I.7)). Enfin,
on suppose que ’on connait les différentes fonctions sur €2, plutot que seulement sur 2.

On peut alors, comme pour les précédents schémas ¢o-FEM étendre la formulation
a Q. Alors, multiplier par une fonction test v et intégrer par parties sur £, donne
la formulation : trouver u dans £, tel que

/ a(u):Vv—/ olun-v= f-v, Vo dans Q.
Q, o, Qn

Conditions de Dirichlet

On consideére premierement le cas de conditions de bord de Dirichlet pures, c’est-a-
dire lorsque I' = I'p. Comme pour le probléme de Poisson, nous allons proposer deux
versions du schéma : la version directe (u = pw + u¥ dans tout £2) et la version duale
(u = op + u9 uniquement sur les cellules « proches » de T').

Introduisons premiérement les espaces éléments finis adaptés aux problémes d’élasticité
dans lesquels les variables seront discrétisées. Pour k > 1, soit

\ R {vh Q) = R%: vy T € P*(T)¢ VT € Tp, vy, continue sur Qh} , (2.26)

I’espace de discrétisation des variables « principales ».

Comme nous 'avons fait dans le cas du schéma dual pour Poisson-Dirichlet, il est
nécessaire d’introduire la version locale de cet espace, défini pour tout maillage My,
couvrant un domaine M} et pour [ > 0, par

QN (M) = {qn : My — R : gy € PHT)? VT € My, g,
continue sur My si k >0}, (2.27)

En particulier, nous aurons besoin de Qf{(Qg) sur le sous-maillage 7;; pour la version
duale.

Maintenant que les espaces éléments finis sont définis, on peut alors introduire les
deux schémas ¢-FEM permettant de résoudre avec des conditions de Dirichlet

pures :
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e p-FEM direct Dirichlet : le schéma direct est donné par, trouver wy, € Vj, tel
que

/ o(pnwy) = V(enzn) —/ o(erwp)n - opzn + Grprwn, ohzh)
Q, o,

+ I (nwn, onzn) :/Q I enzn —/Q o(up) : V(enzn)
h h

* /aQ o(ud)n - opzn, +J7" (pnzr), Vzn € Vi
h

avec ujy, = ui + ppwy. Ici, oy et u,gl sont les approximations éléments finis de ¢ et
u9 sur . De plus, Gy, J;th et J;;hs sont les termes de stabilisation définis par

Gh(u,v) == oph 3 /E (o (w)n] - [o(v)n] | (2.28)

EeF]
Jﬁhs(u,v) = oph? Z / dive(u) - dive(v), (2.29)
- JT
TeT)
J};hs(v) .= —oph?® Z / f-dive(v). (2.30)
TeTt T

Ici, G}, est une adaptation aux équations d’élasticité de la « ghost penalty » in-
troduite a I’équation pour le probléeme de Poisson-Dirichlet, avec op > 0.
Cependant, dans ce cas, on choisit de pénaliser le saut des forces élastiques internes
(en suivant approche [21]), et donc de contrdler les combinaisons appropriées des
dérivées plutdt que les dérivées normales directement. Une représentation des faces
sur lesquelles cette stabilisation est appliquée est donnée a la Figure [I.4] puisque
I’ensemble ]-',1; est défini par . Les stabilisations d’ordre 2 sont introduites de
sorte a imposer ’équation aux moindres carrés sur les cellules coupées par
la frontiere.

e p-FEM dual Dirichlet : le schéma dual est lui défini par, trouver u, € V;,
pn € Qﬁ(Q}:) tels que

1 1
/ o(up) : Vo, — / o(up)n - vy, + 12/ (un — —npn) - (Vh — ~nqn)
Q, o0y, h* Jar h h

+ Gp(up,vp) + J}lbhs(uh, vp) = /Q f-on
h

1
+ % - - (Vh = 5 onan) + JiS (vp), Yo € Vi, qn € QE(Q). (2.31)
h

Les termes de stabilisation Gy, J}llhs et J,’L’hs sont définis respectivement par (2.28)),

E20) ot (@30).
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1

L? relative error
=
1

H' relative error

- /
|7 —e— Direct p-FEM 10-6 |7 —e— Direct p-FEM

107 —<— Dual ¢-FEM —<— Dual p-FEM

f—r —=— Standard FEM -7 —=— Standard FEM

102 107! 102 10—t

h h

FIGURE 2.28 — Cas test 1. (Conditions de Dirichlet). Erreur relative L? (gauche), erreur
relative H' (droite).

10°

Computation time (s)

107 e Direct<p-FEM\
—<— Dual p-FEM
—=— Standard FEM
10719 107 108 107 10 10° 107 1070

L? relative error

FIGURE 2.29 — Cas test 1. (Conditions de Dirichlet). Temps de calcul (en secondes) en
fonction de l'erreur relative L.

Cas test 1. Soit O le carré (0,1)? et soit 7710 un maillage uniforme de O. Soit 2 le
cercle de centre (0.5,0.5) de rayon %, défini par la fonction level-set

olx,y) = —% + (x —0.5)2 + (y — 0.5)2. (2.32)

Les parameétres d’élasticité seront fixés & £ = 2 et v = 0.3 et les parameétres de stabilisation
Ay = op = 20.0. Des éléments finis P? seront utilisés pour Vj, et Qy, i.e. k = 2 dans
(2.26)) et (2.27). Finalement, on considérera une solution manufacturée donnée par

U = Uy = (sin(x) exp(y), sin(y) exp(z)) . (2.33)

Le second membre f de (2.24) est alors calculé analytiquement et les conditions de
bord w9 sont données par u9 = u., sur I'. Afin d’éviter d’utiliser cette expression sur
I'ensemble de 2, (schéma direct) ou sur Q} (schéma dual), on perturbera légeérement
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cette condition de bord, et on imposera plutot
u? = ue (14 ), dans Q ou dans Q.

Remarque 2.14. Les représentations des maillages T}, et ’7;{ peuvent étre trouvées a la
Figure De plus, un maillage conforme pour une méthode éléments finis dans le cas
considéré ici est représenté a la Figure (1.1

Nous allons dans un premier temps étudier la convergence de nos deux schémas ainsi
que celle de la méthode éléments finis classique. Pour cela, nous mesurons les erreurs L2
et H', qui sont représentées a la Figure On remarque que les deux schémas p-FEM
atteignent l'ordre optimal espéré pour les deux normes : h2 pour la semi-norme H'! et
h3 pour la norme L2. De plus, les deux méthodes sont significativement meilleures que
I'approche Standard, qui est sous-optimale en norme L2.

L’efficacité de ¢o-FEM par rapport a Standard-FEM est également confirmée par la
Figure olt I'on représente le temps de calcul en fonction de I'erreur relative L2.
Les temps de calcul considérés ne prennent en compte que les temps d’assemblage des
matrices éléments finis et les temps de résolution des systemes linéaires. Ainsi, pour une
erreur fixée, les résultats sont obtenus significativement plus rapidement avec p-FEM
(direct comme dual), qu’avec Standard-FEM.

Remarque 2.15 (Temps de calcul). Il a été ici choisi de ne pas prendre en compte le temps
de génération des différents maillages puisque pour ce cas test, les simulations ont été
réalisées avec FEniCS qui ne permettait pas de sélectionner les cellules des sous-maillages
©-FEM de maniere optimale.

Conditions de bord mixtes

Considérons maintenant le cas plus complexe de conditions mixtes Dirichlet-Neumann
aubordsur ' =Ty UTpoulp #0et 'y #0.

Comme dans le cas du probléeme de Poisson avec conditions mixtes, on considere
une fonction level-set ¥ nous permettant de caractériser la partie Neumann et la partie
Dirichlet du bord T' :

FD:FH{¢<0} etFN:Fﬂ{¢>O}.

On peut & nouveau introduire les maillages 7y, et T, cf. (L.6) et (1.7) (représentés
aux Figures et [2.12)). La level-set 1) nous permet alors de définir une nouvelle fois
les sous-maillages 7, ” et 7;LFN cf. (2.13) que 'on rappelle :

EFD::{TEEFmbSOsurT} et EPN::{TEEF:zb}OsurT}.

On notera £2y,, Qg, Q}:D et Q}FLN les domaines occupés par les maillages 7y, 77?, 7;5’3
et EFN . On rappelle comme dans le cas de I’équation , Section que certaines
cellules de 7, peuvent appartenir aux deux maillages 7;LFD et 775” ou & aucun (comme
représenté a la Figure . Dans ces deux situations, ces cellules seront considérées
comme des cellules d’interface, pour lesquelles aucune condition de bord ne sera appliquée.
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Des exemples des maillages construits sont représentés aux Figures [2.11] et pour
une jonction Neumann/Dirichlet censée intervenir pour x = 0.5, i.e. pour une level-set
P(z,y) =0.5 —x.

Les cellules intersectées par I appartiennent soit a la partie Dirichlet (et forment
donc ’EZFD , et sont colorées en violet), ou & la partie Neumann (et forment 77er , cellules
colorées en rouge), ou a la partie d’interface et sont alors colorées en bleu.

On suppose une nouvelle fois que u, solution de peut étre étendue de 2 a €,
comme solution de la méme équation. On introduit alors le schéma ¢-FEM en combinant
la version duale o-FEM Dirichlet et 'adaptation au cas de ’élasticité du schéma
Poisson-Neumann proposé dans [23], rappelé en Section (le schéma étant rappelé a
Iéquation (L.19)).

Pour imposer les conditions de Dirichlet, on utilisera 1’équation
u = u? + opp, sur Q}:D ,

ou l'on suppose que u9 est étendue de I'p a QZD .

Les conditions de Neumann seront imposées via l'introduction de deux variables
auxiliaires (comme détaillé en Sections et . Introduisons premieérement une
variable tensorielle y sur QEN , telle que y = —o(u). Pour imposer yn = —g sur 'y, on
rappelle que la normale extérieure unitaire n est donnée sur I' par n = ﬁV(p. Ainsi,
les conditions de Neumann sont imposées en introduisant une seconde variable auxiliaire
(vectorielle), telle que yVo + g|Vp| = —pnyp sur Q};N . Alors, on obtient les équations
suivantes :

y+o(u)=0, sur N, (2.34a)
yVeo+pne = —g|Vel, sur QY. (2.34D)

Il ne reste alors plus qu’a introduire les espaces éléments finis permettant de discrétiser
les différentes variables auxiliaires avant de construire le schéma. Une nouvelle fois, on
pose k > 1, et on consideére l'espace V}, défini par (2.26) comme espace de discrétisation
pour l'approximation wy, de u. Les variables py p et pj n, approximations de pp et py,
seront choisies dans Qﬁ_l(Ql,:N ) et QQ(Q}:D) respectivement (ot QF(Mp,) est défini par
(12.27)).

Enfin, la variable y sera approchée par une variable y, € Z (Q}:N ) ou

Zy(My) = {zp : My — RD . 20 € PHT) D v € My,
zp, continue sur My}. (2.35)

Finalement, on obtient le schéma : trouver uwy, € V3, ppp € QQ(QED), yp € Zh(QllzN)
et pp.N € Qi_l(Ql}:N) tels que
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/ o(up) : Vo, —/ o(up)n - vy —I—/ Ypn - vy,
Qh th\th,N th,N

o (o)) (2n -+ o (0n))

h

i/ 1 : 1
T2 /ﬂrN (yhv¢h+ hPh7N¢h) <zhv€0h + hqh,Nsoh)

h

ol 1 1
+32 /QZD (up, — E(Phph,D) (v, — E@th,D) + Gp(wp, vy)
+ J;th,D(uh’ 'Uh) + J}thS7N(yh, Zh) — AZ f . 'Uh
h

Y 1 ¥ 1
) /Q5 uj - (vn = 7 enan0) = 15 /QEN 9+ [Venl(zn- Vion + +annen)
+J}:hs,D(Uh)+J}:hs,N(zh)
Yo, € Vi, anp € QE(UP), zn € Zn(), qny € QFHQY), (2.36)

ou Gy, est définie par :

Gp(u,v) :==oph Z /E [o(u)n] - [o(v)n]

EeF, P

toxh Y [ lo(wn)-lo(wn) .

r
BeF, N

avec ]-",1; P T’ensemble des facettes de QED et ]-",1; s les facettes de (T, \ ;1) N 7;LFN (voir
Figures et pour des exemples de représentations graphiques). Les termes de
stabilisation J,llhs et J,’;hs sont eux adaptés de et , séparés en termes agissant
sur uy, sur les cellules de la partie Dirichlet (et d’interface) de 7;!', et les termes agissant
sur yy, sur la partie Neumann :

TP ) — aph? 3 / dive(u) - dive(v), (2.37)
TE,ThF\lThFN
JZhS’D(’U) — —O'Dh2 Z / f - div 0'(’0) s (238)
T€7-h1“\7—hrN T
TN (g, 2) = Yaio /QFN divy - divz, (2:39)

h

TN &) = i [ F - diva (2.40)
h
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u = u?

on =g

FIGURE 2.30 — Représentation de la géométrie considérée pour les cas test 1 (I' =T'p) et

FIGURE 2.31 — Cas test 2. Maillages Standard-FEM. Gauche : changement de conditions
de bord conforme. Droite : changement de conditions de bord non-conforme.

Cas test 2. Nous allons maintenant présenter des résultats numériques pour la méthode
(2.36), que nous comparerons a la méthode standard FEM.

Remarque 2.16. Les ordres de convergence optimaux sont ici 3 pour la norme L? et 2
pour la semi-norme H' puisque 'on se place dans la situation d’éléments finis P2, en
considérant une solution manufacturée au moins H?, et donc trés réguliere.

Pour ce cas test, nous considérerons la géométrie définie par (i.e. le cercle centré
en (0.5,0.5), de rayon v2/4), les mémes parametres d’élasticité ainsi que la méme solution
manufacturée que pour le premier cas test de cette section. Des conditions de
Dirichlet seront imposées sur I' N {z > 0.5} et des conditions de Neumann pour x < 0.5,
c.f. Figure ie. ¥(x,y) = 0.5 — z. Les conditions de bord u¢ et g sont calculées a
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partir de la solution manufacturée u.,. Pour o-FEM, elles sont étendues de I" a an et
QZ” respectivement. Elles sont définies par :

uwd = ue(1+ ), sur QF N {z > 0.5},
g =0(Ue)- ”%g—” + Uezlp,  SUT QI;: N{z <0.5}.

Les expressions sont ici une nouvelle fois perturbées lorsque 'on s’éloigne de I' pour
s’approcher d’un cas plus réaliste ou 'on ne disposerait des données que sur I'. Les
parametres de stabilisation sont fixés & v4iy = Y4 = 7p = 1.0, 0 = 0.01 et v = op = 20.0.
La solution wu., ainsi que la solution éléments finis classique et la solution p-FEM (en
plus de sa projection sur un maillage conforme) sont représentées a la Figure

Uref Ustd Uy ﬂu(,,

45e-01  85e-01 _12e+00 _ 16e+00  2.0e+00  45e-0L _ 85e-01 _ 12e+00 _16e+00  20e+00  3.8e-01  8.3e-01 _ 13e+00 17e+00  22e+00  45e-01 _ 85e-01 _ 12e+00 _ 16e+00  2.0e+00
[ [ [

FIGURE 2.32 — Cas test 2. De gauche a droite : solution manufacturée sur un maillage
fin, solution éléments finis, solution p-FEM et projection sur un maillage conforme de la
solution p-FEM.

Comme nous ’avons fait pour le Cas test 3 de la Section nous allons séparer
I’étude numérique en deux cas : le cas matching et le cas not matching.

Cas de changement « conforme ». Commencons par étudier les cas ou le change-
ment de conditions de bord intervient sur des faces du maillage 7,1, que I’on compare
au cas ou le changement intervient sur un noeud d’un maillage standard. Ce cas sera
considéré comme un « changement de conditions de bord conforme » et correspond
aux Figures et [2.31] (gauche). Ici, pour ¢-FEM toutes les cellules de T} sont bien
attribuées soit a 7, ¥ ou a 771FD, et il n’y a donc pas de cellules d’interface. Pour ce
cas, les résultats obtenus par ¢-FEM et Standard FEM, tous deux avec des éléments
finis P? pour wuy,, sont présentés a la Figure Les erreurs relatives L? et H! en
fonction de h sont représentées sur la partie gauche. On observe alors que les ordres de
convergence optimaux sont atteints pour ¢-FEM, tandis que la convergence en norme L?
est sous-optimale pour Standard-FEM. Dans ce cas, po-FEM est toujours plus précis que
I'approche standard, en norme L? comme H'. De plus, la Figure (droite) illustre
qu’a nouveau, pour un seuil d’erreur fixé, les résultats seront obtenus plus rapidement
qu’avec une méthode standard.

Cas de changement « non conforme ». Considérons maintenant un cas moins arti-
ficiel concernant la jonction Dirichlet/Neumann, laquelle pouvant intervenir a 'intérieur
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w1074 \q.; 10°
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107 —— H' o-FEM S
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FIGURE 2.33 — Cas test 2. Cas de maillages avec changement de conditions de bord
conforme. Gauche : erreurs relatives L? et H', en fonction des tailles de maillages. Droite :
temps de calcul en fonction de erreur relative L2.

d’une cellule de ’7? ou d’une face du maillage conforme FEM standard. Ce cas correspond
a la situation présentée aux Figures et (droite).

Les résultats numériques obtenus dans cette situation sont présentés a la Figure
En comparaison avec les résultats obtenus Figure [2.33, on observe que le comportement
du schéma ¢-FEM n’est que trés peu affecté par les cellules d’interface, puisque
les courbes de convergence sont seulement légérement moins lisses. En particulier, les
conclusions faites précédemment sont toujours valables : la méthode p-FEM est plus
précise sur des maillages comparables et moins cofiteuse en temps de calcul pour une
erreur donnée que Standard-FEM.

“»
T :
z 10 5 w°
= e
5 e
o 10°° =}
& L? o-FEM g
7 s}
10 —— H! p-FEM O ot
10-8 —s=— [? Standard FEM —— -FEM
—«— H' Standard FEM —=— Standard FEM
1079
102 107! 10-% 1077 10-6 10-° 104 107%
h L? relative error

FIGURE 2.34 — Cas test 2. Cas de maillages avec changement de conditions de bord
non-conforme. Gauche : erreurs relatives L? et H', en fonction des tailles de maillages.
Droite : temps de calcul en fonction de I'erreur relative L2.
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2.4.2 [Elasticité linéaire avec plusieurs matériaux.

Nous allons maintenant traiter le cas de problémes avec interfaces, que nous modéli-
serons par une structure composée de deux matériaux, avec des parametres d’élasticité
différents. Cette situation a été traitée par les méthodes XFEM [I8, 4, [92] 90], CutFEM
[14, 43| [42], 53], et SBM [54]. Notre objectif est ici de démontrer ’applicabilité de notre
approche dans ce contexte. Pour cela, supposons que la structure considérée occupe un
domaine {2, et est constituée de deux matériaux qui occupent des domaines €2; et €1,
séparés par une interface I'. On suppose de plus que le matériau €21 est inclus dans le
domaine 2. Ainsi, I' = 021, comme illustré a la Figure On suppose également que
le déplacement u est donné a la frontiere externe (0€2).

Le probléme considéré est finalement de trouver u tel que

—dive(u) =f, sur Q\I',
u =, sur 0N, (2.41)
[u] =0, sur I,

[o(u)-n] =0, sur I',

ol n est la normale unitaire de Qq vers o, et [-] est le saut sur I'. Les parametres
d’élasticité sont supposés constants sur chaque domaine, mais différents entre les deux
domaines. Le tenseur des contraintes est donné par

(w) o1(u) =2ue(u) + A\ (divu)l, sur Q,
o =
oa(u) = 2u0e(u) + Ao(divau) I, sur Qo

avec les parametres de Lamé \; et u; définis par (2.25), avec E;,v;, i = 1,2 donnés. En
introduisant les déplacements u; = ulq,, i = 1,2 sur ; et Qs séparément, le probleme
(2.41]) peut étre réécrit sous la forme de deux problémes couplés :

—dive;(u;)) =f, sur Q;, i=1,2,
U =ud, sur 00, (2.42)
uq =uo, sur I',

oi(u)n  =oz(ug)n, sur T.

Supposons que le domaine 2 ait une forme suffisamment simple, de sorte qu’un
maillage conforme 7y, soit simple a générer précisément, par exemple un carré.

Remarque 2.17. Cette condition n’est pas particulierement restrictive. En effet, dans le
cas d’'une géométrie complexe, il sera possible de traiter les conditions de bord de 2 a
I’aide de p-FEM.

Cependant, on suppose que le maillage T, n’est pas conforme & l'interface I'. Nous
allons maintenant adapter la méthode o-FEM a une telle situation. Le point de départ de
cette nouvelle version est la réécriture du probléme sous la forme . Ainsi, nous allons
discrétiser séparément uq dans 7 et us dans £29. Pour cela, commencgons par introduire
deux maillages actifs 71 et Tp 2, sous-maillages de 7, construits de sorte que 7 ;
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contienne les cellules de 7, en intersection avec €2;. En pratique, ces deux sous-maillages
sont définis par une fonction level-set ¢ :

h={e>01nQ,  L={p<0}, T={p=0}nQ,
et ainsi 73 ;, peuvent étre construits en utilisant une interpolation ¢, de ¢, par :
Tha={Te€Th:TN{onr >0} #0} et Tho:={T €Tp:TN{p, <0} #0}. (2.43)

Le sous-maillage 77? est défini comme l'intersection 7y, 1 N Tp 2 et 1, Oy 2, QE sont
les domaines couvrant les maillages 7j 1, Tp 2, 7;; respectivement.

Les inconnues w1 et uo seront discrétisées sur les domaines 2y, 1 et 2, 2, en introduisant
des extensions sur les parties additionnelles proches de I'. Pour traiter cette situation,
plusieurs variables auxiliaires seront nécessaires, proches de l'interface, i.e. sur QE

En prolongeant u; aux domaines €2, , on peut alors écrire une formulation faible au
niveau continu, donnée par :

/ o-z(ul) :V'vi—/ al(uz)nlvz:/ f-’vi,
Qpi 0Qp,; Qi
Yo; sur Qp,; tel que v; = 0 sur 2. (2.44)

Par la suite, par abus de notation la partie de la frontiere de €, ; autre que 9€2 sera
notée 0§y ; et m; correspondra a la normale unitaire sur 02 ; extérieure a €, ;. Les
conditions de bord sur 0f2, i.e. la deuxiéme équation dans , seront imposées forte-
ment. Les autres conditions, sur I'interface I" seront imposées via ¢o-FEM, en introduisant
des variables auxiliaires sur 2} : la variable vectorielle p (similaire a celle introduite pour
les conditions de Dirichlet précédemment) et les variables tensorielles y; et yo (similaires
a la variable y introduite pour les conditions de Neumann). Cela donne alors (cf. les deux

dernieres équations de (2.42))) :

u —us+pp=0, sur Qg, (2.45)
yi +oi(u;) =0, sur QF, i=1,2 (2.46)
y1Vo -4V =0, sur Q. (2.47)

L’équation ([2.47) prolonge la derniére équation de (2.42)) de I'interface I' au domaine
Qr.
h
Discrétisons maintenant les équations ([2.44)—(2.47)).

Pour cela, on considérera k > 1, et
Vii = {vp : Qu; = R oy € PHT)T VT € Ty,
vy, continue sur Qy;, et vy, = [yu? sur 9N}  (2.48)

ou Iy est 'interpolant éléments finis classique, ainsi que les versions homogenes corres-
pondantes : V}IOZ- avec la contrainte v, = 0 sur 952, espaces utilisés pour les fonctions
test.
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De plus, on considérera les espaces Q;Lk)(Ql,;) et Z,(QF) définis respectivement par
@ et pour discrétiser les variables auxiliaires. En combinant (2.44)) avec ([2.45))—
E introduites sous la forme des moindres carrés, on obtient le schéma suivant :
trouver up 1 € Vi1, up2 € Vi 2, Py € QZ(Q,FZ), Yn1,Yh2 € Zh(Qg) tels que,

i(wn) Vvhz+z yhm Vp
Z -

1 1
+ %/ (up1 —up2 + EphSOh) (V1 — o2+ thwh)

+ Yu Z/ (Yni + oi(uni)) @ (zni + oi(vns))
=17,

+ ﬁ/ (Yn1Von —yn2Ven) - (zn,1Veon — 2n,2Vp)

2

+Z(Gh(uhz,vhz)+J}thSN(yh,iazhz Z/ I ’vhz+ZJThSN (zh4)

=1
VUhJ S Vho,l,vhg S Vh72,qh S Qh(ﬂh),zh,l,zhg € Zh(Qh) . (2.49)

Comme précédemment, les termes de stabilisation ont été ajoutés, avec Gy, défini par

(2.28) et Jghs’N par ([2.40)) avec Ql,:N remplacé par QE et en imposant divy; = f sur Ql}:

a la maniere des moindres carrés.

Cas test 3. On considere Q = (0,1)? et Q;, Qo définis par ¢
o(z,y) = —R> + (z — 0.5)> + (y — 0.5)2,

avec R = 0.3 comme illustré & la Figure [2.35] Une nouvelle fois, pour calculer l'erreur,
nous utiliserons une solution manufacturée, définie par

’U,:’U,ex:{

ou r = /(x —0.5)2+ (y — 0.5)2. On détermine alors f de maniére analytique et on
impose ug = Ue, sur 0.

Les parametres d’élasticité sont donnés par F1 =7, F5 = 2.28 et v; = v = 0.3. Une
représentation des maillages considérés pour ¢p-FEM et pour Standard-FEM est donnée
a la Figure [2.36

Pour la méthode standard, la solution uy, € V}, est obtenue grace au schéma

(cos(r) —cos(R))(1,1)T  sir <R,
(cos(r) — cos(R))(1,1)T  sinon,

S~

Z/ i(up) @ Vo, = / f-op, Yo, eV, (2.50)
Qp,

ot V}, est I’espace éléments finis de degré P* approchant ug sur 01 et V,? est son analogue
homogene.
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u = ud
$2

[o(u) -n]=0

FI1GURE 2.35 — Représentation de la géométrie considérée pour le cas test 3.

Tha Thz T
—=/T

7 </ %&%’
e

D N

Ay

FIGURE 2.36 — Cas test 3 : probléeme d’interface. Gauche : maillage p-FEM, avec
7;{ représenté en violet. Droite : Maillage standard, conforme & l'interface I'.

Les résultats obtenus avec le schéma p-FEM (2.49) et la méthode standard , pour
des éléments finis P? sont présentés a la Figur On représente également a la figure
[2:37] les déplacements obtenus par les deux méthodes ainsi que la solution de référence
et la projection sur un maillage conforme de la solution p-FEM. Les conclusions sont
une nouvelle fois les mémes que pour les deux cas test précédents : dans ce cas, p-FEM
est plus précise que la méthode standard sur maillages de tailles comparables et moins
coliteuse en temps de calcul pour une erreur fixée.
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Uref Ustd uqz I'Iua,

21e-21 30e-02 _ 6.1e-02 _ 9.1e-02  12e-01 9.0e-06 _30e-02 _ 6.1e-02 _ 9.1e-02  12e-01 15609 30e-02 _ 61e02 _ 9.1e-02  12e-01
[ [

19e-09  3.0e-02  6.1e02  9.e-02  12e01

FIGURE 2.37 — Cas test 3 : probléme d’interface. De gauche a Droite : solution
manufacturée sur un maillage fin, solution éléments finis, solution @p-FEM et projection
sur un maillage conforme de la solution p-FEM.

—— &FEM

" —=— Standard FEM
107% |7
107t // .
10-3 //
|7 —e— L% o-FEM
107 —<— H'! ¢-FEM
o —=— [? Standard FEM

—=— M Standard FEM

Rlative error
Computation time (s)
S

1072 10t 108 107 106 107° 104 103 1072
h L? relative error

FIGURE 2.38 — Cas test 3 : probléme d’interface. Gauche : erreurs relatives H' et
L? en fonction de la taille de maillage. Droite : temps de calcul en fonction de I’erreur
relative L2,

2.4.3 Problémes avec des fractures

Considérons maintenant le cas d’un probleme d’élasticité linéaire posé sur un domaine
avec une fracture, Q2 \ I's ot I'¢ est une fracture (une courbe en 2D, une surface en 3D) a
I'intérieur du domaine {2 :

—dive(u) =f, sur Q\ Ty,
u =ud, sur 00, (2.51)

o(u)n =g, sur I'y.

Ce type de probléme est le domaine d’application original de la méthode XFEM, cf. [69].
Notre objectif va étre d’adapter I’approche p-FEM a ce type de probleme.

En pratique, la géométrie de la fracture sera donnée par une premiere fonction level-set
¢ (qui permettra de localiser la fracture en 2D et sa surface en 3D) et une seconde
level-set ¥ qui localisera les extrémités de cette fracture :
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Ty i=Qn{p=0}n{e<0}.

Supposons que la courbe (surface) I' := {¢ = 0} sépare {2 en deux sous-domaines §;
et o, caractérisés respectivement par {¢ < 0} et {¢p > 0}, comme représenté a la Figure
L’interface I' consiste alors en I'y et la partie (fictive) restante, Iy, :

Piut = 20 {p = 0} N1 {t > 0}.

u = uY

FIGURE 2.39 — Représentation de la géométrie considérée pour le cas test 4.

Afin, de réutiliser le schéma ¢-FEM (12.49)) introduit précédemment pour les problémes
d’interface, on peut reformuler le probleme (2.51f) en utilisant deux inconnues u; = ulq,,
1 =1,2, sous la forme :

—dive(u;) =f, sur ;,
u; =9, sur 0N,

[u] =0, sur Dy, (2.52)
[o(u)n] =0, sur Ty,
o(u)n =g, sur I'y.

On suppose que la géométrie est suffisamment simple pour étre maillée de fagon
conforme par un maillage cartésien 7, ce dernier n’étant pas conforme a l'interface I'.
Les variables u; et uy seront discrétisées séparément dans 21 et {29, en utilisant la forme
comme point de départ. On introduit alors une nouvelle fois deux sous-maillages
Th et Th 2, donnés par . De plus, on introduit un maillage sur l'interface, donné
par ’ELF = Th,1 N Tp 2, séparé lui en deux sous-maillages en fonction de ) :

ﬁlrf::{TeﬁLF:wQOsurT} et Eri”t::{TeﬁLF:w>0surT}.

Comme dans le cas des conditions mixtes Dirichlet/Neumann, cette définition peut
laisser quelques cellules n’appartenant a aucun des sous-maillages ou aux deux, comme
illustré a la Figure ou les cellules de 7;er et '7;5”” sont représentées respectivement
en rouge et en bleu. La situation décrite est représentée a la Figure (droite) ou les
cellules roses représentent les cellules restantes. Ces cellules correspondent aux cellules
en intersection avec la droite {1) = 0}, correspondant a la droite caractérisant ’extrémité
interne de la fracture.
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Maintenant que les différents maillages sont définis, nous allons pouvoir construire
le schéma ¢-FEM correspondant. Soit une nouvelle fois £ > 1. On considere Vj, 1, Vi, o
les espaces éléments finis de degré k sur 7Tp, 1 et Tp 2, ainsi que les espaces homogenes
correspondant, Vh(fl, Vh(f2 (cf. ) pour approcher uy et uo. Ces espaces seront utilisés
pour la discrétisation de la formulation variationnelle de la premiére équation de
et appliquer les conditions de bord sur 0f). Les équations restantes dans , i.e. les
sauts sur I';,; et les conditions de Neumann sur I'y seront traitées via p-FEM et donc en
introduisant des variables auxiliaires sur les parties appropriées de Ql,: (i.e. le domaine
recouvrant le maillage ;') :

. T . T . N
o les inconnues p et yi, y2 sur ;" (domaine recouvrant 7, **) serviront & imposer
la continuité du déplacement et des forces normales sur I';,; avec les équations

u; —uz+pp=0, sur Qgi"t,
y; = —o(u;), sur QI}:”” ,

yl'VSD*yTVSO:O? sur ngt,

qui sont les mémes que celles introduites dans (2.45)—(2.47)), a la seule différence
qu’elles ne sont imposées que sur une portion de Ql}: . Ces variables seront donc

discrétisées dans les espaces QfL(Q,I:i"t) (cf. (2.27))) pour p et Zh(QZi"t) (cf. (2.35]))
pour yi,yz.

. . s . r . r .
o les inconnues p)¥ et y, i = 1,2 définies sur Q,’ (domaine couvrant 7, /) serviront
elles a imposer les conditions de Neumann sur I'¢, avec les équations

r
yzN = 7U(ui)a sur th )

r
y Vo +pNp+g|Vel =0, sur Qf,

les mémes que ([2.34)(a-b) cette fois seulement sur ng au lieu de Ql,:N .
Les variables p¥ seront discrétisées dans Qf;l(QZf ) et yN dans Zh(Ql,:f ).

Remarque 2.18. Cette combinaison d’équations n’impose pas exactement les conditions
d’interface sur 'ensemble de I' puisque cette derniére peut ne pas étre complétement
couverte par Ql,:f U Qlf:““. Ce défaut dans la formulation continue, sera comblé dans la
formulation discréte en introduisant les termes de stabilisation appropriés, comme nous
avons pu le voir pour le cas des conditions mixtes Dirichlet/Neumann.

Tout cela donne finalement le schéma : trouver uy 1 € Vi1, up2 € Vi 2,
Ph € QZ(Q}L t)a yh,hyh,Q S Zh(Qh t)v th’ppﬁQ S Qh (th)v y}]L\fluy}]L\fQ € Zh(th) tels
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que

2
Z(/ o(up,;) : Vvhﬂr/ Yhim - 'vhz"‘/ , yrm - vp
QhL [0/95

i=1 h,i

o(up;)n - vhﬂ-)

/5’Qh,z'\(39h,i,mt UoQhn s, f)

p 1 1
T2 /QI}:W (wp1 —un2 + Ephsoh) (Vp,1 —vp2 + thgoh)

mz / (yni + o (un)) : (zn + o (vp,))

+ %/ v U aVen = yn2Ven) - (zn1 Vo — 2n2Ven)

2
£ 3 [ Wi+ o lung) s G+ o)

’Vp,

1 1
Z/Ff Yh, szh + hph z(ph) (zh szh + hqh 190h)

+ Z (Gh Wi, vn) + I (Y zng) + T (y]]zvza Z;%))

1
= Z/Q f-vni— ’yp’ Z/ gIVeonl(zhVeon + h(IthDh)
i=1 h,i

2
+ Z (J;L’hs,znt ( ) Jrhs f (Zh Z)) :
=1
v Vo Vo koqlint VA QFim
Vh1 € Vii1,0n2 € Vi, qn € Qp(S4, ™), 21, 202 € Zn( );
_ T T
qéYl?q;L\,[Q € Qﬁ 1(th) lelvlazh2 € Zn(,’). (2.53)

Comme précédemment, Gy, a été ajoutée. De plus J;th yint J,llhs’f (ainsi que

leurs analogues dans le second membre) ont été adaptés de J,lthN cf. (2.39)) pour
correspondre aux bons sous-maillages :

Ty 2) = Vi /Q divy-divz, J,"(y,2) =i /Qrf divy - divz.
h h

Comme introduit pour les problémes d’interface, nous avons ici noté 9§y, ; les parties
de frontieres de Qj; autres que 9Q. De plus 9Q, partie de 982, ; est formée par les

faces de Tj; appartenant aux cellules de 775'”” et 8Q£i a été construit de la méme facgon.

Cas test 4. Soit Q = (0,1)? avec I'interface I' donnée par la level-set

1 1
pla,y) =y — 7 sin(2rz) — 5.
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L’extrémité interne de la fracture sera au point d’abscisse x = 0.5, ainsi
Fing ={p=0}N{x <05} et TIy:={p=0} Nn{z>0.5}.
Cette situation est représentée a la Figure [2.39
Le schéma o-FEM ([2.53)) est utilisé pour résoudre (2.51)), avec la solution manufacturée

U = U, = (sin(z) x exp(y),sin(y) x exp(x))’
définissant f, g, et u9.
Les forces g sur la fracture sont étendues a un voisinage de I'y, construit par
Ve
=o(u + QUey -
Al 7 R
Les parametres de stabilisation sont fixés & v, = vp = Yaiw = Yu,N = Vp,N = Vdiv,N = 1.0,
op =1.0 et op = 20.0.

T, WA T . T

Voo, T T T

FIGURE 2.40 — Cas test 4 : cas d’une fracture. Maillages o-FEM. Gauche : maillage
« conforme » a l'extrémité de la fracture; les cellules de ﬁlri”t sont en bleu; celles de 7;er
en rouge. Droite : maillage « non-conforme » a 'extrémité de la fracture; en rose les
cellules de Iinterface entre 775”” et 7;5’1 .

Deux séries de simulations ont été réalisées pour étudier les résultats de p-FEM
(2-53), avec des éléments finis P? : premiérement pour le cas de la Figure (gauche)
ol l'extrémité de la fracture intervient sur une face du maillage et deuxiémement, lorsque
celle-ci est a l'intérieur d’'une cellule du maillage, i.e. Figure (droite).

Les résultats présentés Figure 2.41] indiquent que la convergence de o-FEM est optimale,
dans les deux situations.
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1073

Relative error
Relative error

10-9

1077 1077

FIGURE 2.41 — Cas test 4 : cas d’une fracture. Erreurs relatives H' et L? en fonction
de la taille de cellule. Gauche : maillages « conformes » a I’extrémité de la fracture.
Droite : maillages « non-conformes » a 'extrémité de la fracture.

2.4.4 Nouveaux résultats pour des conditions mixtes

Dans les cas test précédents, nous avons étudié numériquement la convergence des
schémas proposés. En particulier, pour le cas de ’équation , et donc du schéma
, nous n’avons considéré que des solutions manufacturées. L’avantage de ces solutions
est la facilité de calcul de 'erreur commise par les méthodes numériques. Cependant,
comme nous ’avons vu a la Section [2.2] la plus grosse difficulté dans le cas de conditions
mixtes est le traitement de la singularité de changement de conditions de bord. Or,
les solutions manufacturées présentées ne présentent pas de telle difficulté. Il est donc
important pour appuyer la validation numérique de notre méthode de considérer des cas
test supplémentaires, plus réalistes. Nous allons ainsi proposer deux cas test numériques
sans solution manufacturée : le premier ne présentera pas de singularité, le second en
comportera 2.

Cas test 6 : anneau. Dans un premier temps, on se place dans la situation du premier
cas test de la Section représentée a la Figure (gauche), et on considére I’équation
, avec f = (0, —pg) avec p = 0.6 et g = 9.81. De plus, on fixe u9 = (0,0) sur I'p et
g = (0,0) sur I'y. On applique alors le schéma a ce probleme et on le compare a
une méthode éléments finis classique. Pour calculer 'erreur, la solution de référence sera
obtenue par une méthode éléments finis classique, sur un maillage conforme, avec une
taille de cellule h =~ 0.001.

Les configurations initiale et déformées pour ce cas test, sont représentées a la Figure
2.42] ainsi que la différence entre les solutions approchées et la solution de référence.

On représente a la Figure les résultats obtenus pour p-FEM et une méthode
éléments finis classique. Les erreurs relatives L? et H' sont représentées a la Figure
semblant confirmer ceux obtenus précédemment, pour des solutions manufacturées. Ainsi,
les ordres de convergence optimaux sont atteints pour ¢-FEM alors que la méthode
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standard est sous-optimale pour les deux normes.

Reference initial geometry Urer |Urer — Ustqll o = 3.43 x 107> lurer — Up|l =5.51 x 1076

0.00e+00 _4.55e-02 _ 9.11e-02 _1.37e-01  1.82e-01  349e-19 850e-06 172e-05 2.58e-05 343e-05  154e-09 140e-06 2.80e-06 4.20e-06  5.60e-06
I I I

FIGURE 2.42 — Cas test 6. Configurations déformées pour les solutions obtenues.
Les nuances de couleurs représentent le déplacement pour la solution de référence et
'erreur en norme L? (en chaque point) pour o-FEM et FEM standard.

Relative error
N N .

:—o— 12 -FEM
—<— H' p-FEM

—=— [? Standard FEM
—«— [ Standard FEM

107°

102

h

FIGURE 2.43 — Cas test 6. Erreurs relatives L? et H! en fonction de h.

Cas test 7 : disque avec une singularité. Enfin, un cas test supplémentaire impor-
tant pour valider notre méthode est le cas ol une singularité de changement de conditions
de bord est présente. Dans ce cas, comme nous ’avons vu pour le probleme de Poisson
dans la Section la solution est au plus H3/2 et donc la convergence espérée est d’ordre
1 en norme L? et d’ordre 0.5 en norme H'. Pour vérifier que ces ordres sont atteints,
nous considérerons le cas d’'un disque fixé sur sa partie haute, et sans contrainte sur la
moitié basse, soumis a la gravité, i.e. avec des conditions de Dirichlet sur ' {y > 0.5} et
de Neumann homogenes sur I' N {y < 0.5} et un second membre donné par f = (0, —pg)
avec p = 0.6 et g = 9.81.

Pour le calcul d’erreur, la solution de référence sera obtenue par une méthode éléments
finis classique, sur un maillage conforme trés fin. Comme pour le cas test 2 de cette
section, nous considérerons 2 situations différentes : dans le premier cas, le changement
de conditions de bord sera sur un noeud du maillage standard et par analogie sur une
face du maillage ¢-FEM ; dans le second cas, le changement sera situé sur une face du
maillage standard et a I'intérieur d’une cellule du maillage ¢-FEM. Les configurations
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initiales et déformées pour un tel cas test, dans la derniere situation, sont représentées
a la Figure [2.44] ainsi que la différence entre les solutions approchées et la solution de
référence.

Reference initial geometry Urer |luref — Ustgllw = 7.23 x 1073 lurer — upl =6.11 x 1073

131e-20 234602 468e-02  7.02¢-02  9.36e-02  4.13e-08 181e-03 3.62e-03 543¢-03  7.24e-03  168e-10 15303 3.06e-03  4.59e-03  6.12e-03
EE—— EE—— I

FIGURE 2.44 — Cas test 7. Configurations déformées pour les solutions obtenues.
Les nuances de couleurs représentent le déplacement pour la solution de référence et
'erreur en norme L? (en chaque point) pour o-FEM et FEM standard.

0.5
0.5
" / 1o /E

—s— 2 o-FEM

—— H' ¢FEM
—=— [? Standard FEM
—— H' Standard FEM

—— 2 o-FEM

—— H! -FEM
0> —%— L? Standard FEM
—— H! Standard FEM

Relative error
Relative error

FIGURE 2.45 — Cas test 7. Erreurs relatives L? et H! en fonction de h.
Gauche : cas ou la jonction intervient sur une face de Ql}: Droite : cas ou la jonction est
a l'intérieur d’une cellule de Qg

On représente a la Figure les résultats obtenus pour ¢p-FEM et une méthode
éléments finis classique. Dans les deux situations, ’ordre optimal est atteint pour la
norme L? ainsi que pour la norme H'. De plus, dans les deux cas, l’erreur obtenue en
norme L? est plus faible pour ¢-FEM que pour I'approche standard. Cependant, dans
la premiere situation (Figure gauche) la méthode standard donne de meilleurs
résultats que la méthode o-FEM en norme H'.

2.5 ¢-FEM pour l’élasticité non-linéaire

Enfin, le dernier probléme type qui sera considéré dans ce manuscrit sera la déformation
de matériaux élastiques non-linéaires. Ces équations sont proches de (2.24)) a la différence
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que le tenseur considéré n’est pas linéaire. Ainsi, le probléme sera de trouver u € R?
vérifiant
—divP(u) =f, dansQ,
u =wup, sur I'p, (2.54)
Pu)-n =g, surly,

pour f, up et g données.

Pour modéliser ce probléme, il est possible de considérer différents types de matériaux,
modélisant de maniere plus ou moins précise (et ainsi plus ou moins complexe) les grandes
déformations. Ainsi, I’expression du tenseur P sera modifiée en accord avec le type de
matériau choisi. Par exemple, considérant un matériau compressible modélisé avec une
loi Néo-Hookéenne, le premier tenseur des contraintes de Piola-Kirchhoff P, est donné
par (c.f. [48] eq. (6.1)]) :

P = T,

que l'on notera par la suite P(u), ou la fonction W est définie par (c.f. [§]) :
A
W= g (I =3 = 2In(J)) + 5 In(J)?

Ici, I} = tr(C) est le premier invariant du tenseur de déformation de Cauchy-Green, C,
donné par C = FT . F, ou F = I + Vu est le tenseur de déformation. Enfin, J = det F
est le déterminant Jacobien.

Les parametres p et A sont définis de la méme maniere que pour les équations
d’élasticité linéaire vues précédemment.

Remarque 2.19. On peut également considérer d’autres lois, telles que la loi de Saint-

Venant-Kirchhoff, plus proche de I’élasticité linéaire, pour laquelle W est donnée par

1
W = 5A(trE)2 +u(E: E).

2.5.1 Construction du schéma

On se place dans le contexte de I’équation . Le schéma o-FEM sera construit
de la méme maniere que le schéma , en introduisant des variables y, py et pp sur
Q}:N et Q}:D qui sont eux construits comme précédemment. Il suffit alors d’adapter les
équations au nouveau cas considéré, ce qui donne ainsi

y+ P(u) =0, sur QEN ,
yVo+pne = —g|Ve|, sur QN
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Le schéma p-FEM pour résoudre (2.54) est finalement donné par :
trouver uy, € ViF, pp v € Qh (QFN) Yyp € Zh(Q N) et php €Q k)(QFD) tels que

P(Uh)iv’vh+/F yhn'vh*/ - V’uhn"vh*/ Jron
O ol N 00,\00LN Q

1 1
+ WD/ (up, — 5 PhPD — up,p)(vh — E@thﬂ)
h
toph? Y A (div P(up) + f) div(Du(P)(up)on)
TefThFDUfThFInt

9 [ o U+ Plun) - (21 4+ Du(P)(w)on)

1
*Qh,N%)

1
ti2 / (YnVeon + 7PRNPh 9|Venl) - (2nVeon + .

+ Vdiv /QFN (divyp + fr) - div zp, + Gp, (up, vp) =0,

h

Yo, € V¥, qnn € Q(k b (QFN)a zh € Zu().anp € Qh (QED)y

Gp(u,v) :==oph Z / n| - [Dy(P)(u)vn]
EeF, P

ronh 3 / n] - [Du(P)(u)vn]
Ee]—'

avec Dy, (P)(u)v la dérivée de P évaluée en u, dans la direction v et vy, Yu, Yaiv, o des
constantes positives.

2.5.2 Résultats numériques

Nous allons maintenant comparer ce schéma a une méthode éléments finis classique
pour évaluer ses performances. Pour cela, nous étudierons 2 cas test numériques, notam-
ment adaptés des situations vues précédemment dans le cas de I’élasticité linéaire.
Dans un premier temps, nous validerons le schéma sur le cas de ’anneau pour lequel la
solution ne présente pas de singularité. Puis, nous considérerons un cas test modélisant
la déformation d’une poutre avec des coins arrondis.

Cas test 1 : déformation d’un anneau. Pour ce premier cas, on se place dans le
contexte d’une solution sans singularité, en considérant la géométrie du Cas test 1 de la
Section m (représentée a la Figure Gauche) avec le grand disque de rayon 0.4 et
le petit de rayon 0.1. Le domaine est déformé par la gravité, et donc f = (0, —pg). On
considere de plus le cas de conditions homogenes sur I'p et I'y et le matériau est modélisé
par une loi Néo-Hookéenne. Comme pour le cas de I’élasticité linéaire, les éléments finis
utilisés sont de degré 2. Les déformations obtenues sont représentées a la Figure [2.46
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[ Urer — Ustgll = 9.71 X 10-5 IUrer — |l = 8.57 x 105

Urer

Reference initial geometry

6.37e20 _3.63e:02 7.27e-02_109e-01 145e-01  128e-07 2.15e-05 4.29e-05 6.43¢-05 857e-05  131le-19 24305 4.86e-05  7.29e-05  9.72e-05
EE——— [

FIGURE 2.46 — Cas test 1. De gauche a droite : géométrie considérée; solution de
référence et géométrie déformée par cette solution ; géométrie déformée par la solution
Standard-FEM ; géométrie déformée par la solution p-FEM.

On calcule alors Ierreur relative L? pour ¢-FEM et Standard-FEM, par rapport a
une solution de référence. Les résultats obtenus sont représentés a la Figure 2.47] ou l'on
observe comme dans le cas de I’élasticité linéaire que les erreurs de o-FEM convergent
a lordre 3 lorsque Standard-FEM converge a l'ordre 2. Cependant, il est important de
préciser que, le systéme non-linéaire généré par le schéma p-FEM est plus lourd que
celui de Standard-FEM et il est donc nécessaire de réaliser plus d’itérations lors de la
résolution numérique, ce qui est plus cotiteux en temps de calcul.

107 —e— »-FEM
—=— Standard FEM

Z

1073

L? Relative error

2x 1072 3x 1072 4% 1072 6x 1072

h

FIGURE 2.47 — Cas test 1. Erreurs relatives L2 en fonction de la taille de cellule h.

Cas test 2 : déformation d’une poutre 2D. Pour le second cas test, nous allons
maintenant considérer une situation plus complexe présentant des singularités de change-
ment de conditions de bord. Pour cela, la géométrie représentera une poutre dont les 4
coins seront arrondis, caractérisée par une fonction level-set

0.25
(=05 (y—05)*
#z,y) = ( 043t T 017 L
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La partie gauche de la poutre sera fixée (conditions de Dirichlet u = 0) et la partie droite
sera libre (conditions de Neumann P(u) - n = 0). Les frontiéres Dirichlet et Neumann
seront caractérisées par la fonction level-set 1 (x,y) = x — 0.3, ce qui donne la situation
représentée a la Figure Enfin, le second membre de sera la gravité.

on =10

FIGURE 2.48 — Cas test 2. Représentation de la situation considérée pour la déformation
d’une poutre.

On compare alors la méthode o-FEM a la méthode Standard-FEM, en calculant
Ierreur par rapport a une solution de référence Standard-FEM, obtenue sur un maillage

fin.

Reference initial geometry Urer [lurer — Ustal« = 2.65 x 1073 lurer — ugl. =3.78 x 1073

0.00e+00 _3.27e-02  6.55e-02 9.82e-02 1.31e-01  2.22e-12 7.85e-04 157e-03 2.36e-03 314e-03  4.01e-09 9.46e-04 189e-03 2384e-03  3.78e-03
B B B

FIGURE 2.49 — Cas test 2. De gauche a droite : géométrie considérée; solution de
référence et géométrie déformée par cette solution ; géométrie déformée par la solution
Standard-FEM ; géométrie déformée par la solution p-FEM.

On représente un exemple de solutions obtenues par les deux méthodes a la Figure
Les résultats numériques présentés a la Figure illustrent que les deux méthodes
atteignent une convergence d’ordre 1 en norme L? relative, la méthode ¢-FEM offrant
des erreurs légerement plus faibles que la méthode Standard-FEM.
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—— o-FEM
—=— Standard FEM

L? Relative error

h

FIGURE 2.50 — Cas test 2. Erreurs relatives L2 en fonction de la taille de cellule h.

2.6 Conclusion

Dans ce chapitre, nous avons présenté plusieurs schémas p-FEM permettant de
résoudre différents problemes classiquement traités par les méthodes éléments finis. Nous
avons dans un premier temps introduit une nouvelle version de la méthode ¢-FEM pour
résoudre le probleme de Poisson avec conditions de Dirichlet, ayant ’avantage d’étre
compatible avec le schéma p-FEM pour les conditions de Neumann, ce qui nous a alors
permis de construire un schéma complet adapté au cas de conditions mixtes.

Nous avons par la suite traité le cas de I’équation de la chaleur pour laquelle la
méthode ¢-FEM s’est montrée tres intéressante. En effet, nous avons démontré et illustré
numériquement que la méthode converge de maniére quasi-optimale.

Enfin, nous avons étendu notre étude numérique a différents problemes d’élasticité,
linéaire et non-linéaire. Dans tous les cas étudiés, la méthode p-FEM s’est montrée au
moins aussi performante que la méthode des éléments finis classique, avec des gains
notables en précision et en cotit de calcul.
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Résumé

Dans ce chapitre, nous présentons une nouvelle approche aux diffé-
rences finies, inspirée de la méthode ¢-FEM. Cette méthode, appelée
p-FD, utilise des grilles cartésiennes, offrant une simplicité d’implémen-
tation. De plus, contrairement aux schémas de différences finies existants
pour des domaines complexes, la matrice associée a la méthode est bien
conditionnée.

L’utilisation d’une fonction level-set pour décrire la géométrie rend
cette approche relativement flexible. Nous démontrons ici des taux
de convergence quasi-optimaux ainsi que le bon conditionnement de
la matrice. Des expériences numériques en 2D et 3D valideront les
performances de la méthode ¢-FD par rapport aux méthodes standard
éléments finis et a 'approche de Shortley-Weller. Nous proposerons
finalement une combinaison avec une technique multigrid pour accélérer
davantage les calculs.

Chapitre 3 — ¢-FD : o-FEM adaptée aux différences finies
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Dans ce chapitre, nous allons proposer une nouvelle approche aux différences finies
pour résoudre ’équation de Poisson Dirichlet ((1.1)) sur un domaine €2, de frontiere I' = 092,

que ’on rappelle :
{—Au = f, dans Q,

U =0, surl.

81
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Les résultats présentés dans ce chapitre ont été publiés dans l'article [25].

Nous avons jusqu’a présent considéré uniquement des méthodes éléments finis pour
résoudre des EDP. Cependant, une autre méthode répendue dans ce domaine est la
méthode des différences finies. Cette méthode est répandue notamment en raison de son
efficacité numérique. En revanche, les approches différences finies classiques sont tres
limitées puisque nécessitant 'utilisation de grilles cartésiennes exclusivement. L’approche
principale utilisée dans la littérature pour appliquer des méthodes aux différences finies a
des géométries complexes est la méthode introduite par Shortley et Weller dans [82]. Dans
[89, @], les auteurs ont proposé des techniques d’étude de convergence pour cette méthode,
utilisant des fonctions de Green discrétes ainsi que le principe du maximum pour obtenir
des estimations précises des coefficients de la matrice inverse. Ces estimations génerent
parfois des phénomeénes de « supraconvergence », ou le schéma numérique converge a un
ordre plus élevé que l'ordre espéré en théorie. Dans [20], les auteurs ont considéré des
problemes elliptiques avec des interfaces immergées. Un schéma de second ordre pour
résoudre 1’équation de Poisson avec conditions de Dirichlet sur des domaines irréguliers
a été proposé dans [37]. La méthode d’interface immergée [55] est basée sur une grille
cartésienne et associée a un schéma aux différences finies de second ordre, pour des
équations elliptiques de second ordre générales ainsi que des équations paraboliques
linéaires. La combinaison des différences finies et de méthodes non conformes est ainsi
une idée naturelle. Cependant, 'inconvénient des méthodes proposées précédemment
dans la littérature est généralement le mauvais conditionnement des matrices associées.

Dans ce chapitre, nous proposons un schéma aux différences finies sur grille cartésienne
inspiré par o-FEM. La géométrie sera décrite par une fonction level-set ¢, utilisée pour
appliquer les conditions de bord par pénalisation. Cette nouvelle méthode, appelée p-FD
allie convergence optimale, bon conditionnement de la matrice associée au probléme et
facilité d’implémentation (peu de lignes de code python, avec 1'aide du package scipy
[88], cf. Annexe . La premiere section de ce chapitre sera dédiée a la présentation
du schéma. Dans la deuxiéme section, nous ferons le lien entre cette méthode et la
méthode p-FEM, en particulier une version légérement modifiée du schéma dual .
Nous proposerons ensuite des preuves de résultats théoriques a la troisieme section.
Une deuxiéme version de schéma ¢-FD sera introduite dans la quatrieme section, sans
résultat théorique. Enfin, la derniére section sera dédiée a la présentation des résultats
numériques.

3.1 Présentation du schéma et des résultats principaux

On considére un domaine 0 défini par une fonction ¢, telle que Q = {p < 0}, et
I'={p=0}.
n
On suppose que € est inclus dans O := [] [a;, b;] avec b; — a; = b; — a;j pour i # j.
i=1
Soit N € N*, h = (by — a1)/N, on consideére la grille cartésienne couvrant ce rectangle :

Op:={zq :a€{0,--- ,N}"}
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avec To, = a; + a;h pour o = (o, - -+ , ). On note
{1}, sin=1,
D = {{(1,0),(0,1)}, sin=2,

{(1,0,0),(0,1,0),(0,0,1)}, sin=3,
et on définit les sous-grilles suivantes :
Qp={2a €0, :24 €Qounxatqg€N, de D},

QY = {2, € Op 1 24 € Q).

De plus, soit Qy,, I'union des carrés de sommets z, € O}, en intersection avec 2 et
., ~int . , . . .
soit £2;, 'union des carrés de sommets z, € O, inclus dans 2. Un exemple de situation
est représenté a la Figure

® ®© 6 0 0 & 0 o 0o o/

® ®© o & 0 0 o o
® ®© 6 o 0 0 & 0o O 0o o o

e/ © o o o 0 o o 0 o o o
® & o & 0 0 0 0 0 0 0 0o o0
® &6 & & o o 0 0 06 0 0 0o o o
® @ © & o o O & & o O 0 0 o o o
® &6 & & 0 0 0 0 6 0 O 0 0 0 o0
® 6 06 06 06 06 0 06 06 06 0 0 0 0 o o
e & o & o 0o 0 0 06 0 0o o o

FIGURE 3.1 — Représentation de €, Qp et T

Présentons maintenant notre schéma, qui sera introduit ici pour toute dimension. Le
schéma sera également décrit en 2 dimensions, avec les indices explicités en Section [3.3
Le schéma est donné par : trouver une fonction discrete up = (Uq)a:z,c, définie sur Qp,
telle que

ah(uh,vh) = lh(vh), (31)

pour toute fonction discrete vy, = (Va)a:z.cq, définie sur €, ot
ap(un,vp) = (—Apun, vy) + bp(un, vp) + jn(un, vn)

et

Wow) = > > fava,

QT GQ}{“ deD
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avec fo = (f(xa))a, le Laplacien discret :

_ _ 2 —
(= Aptn, vp) = Z Z Ug d+h;ta er—l—dva’
@, €Qirt deD

la pénalisation pour imposer les conditions de bord

1
b (un, vp) = 2%2 >

2 1 2 (Patdla — Pallatd)(PatdVa — PaVatd)
(adyeB Fo T Patd

et un terme de stabilisation proche de la frontiere

Jn(un,vn) =0y

(a,d)eJ

—Uq—d + 2Uq — Ua-d % —Vg—d + 2V — Va+d
h h

avec vy, 0 > 0 et

B ={(«,d)| le segment z, — x4 intersecte I' et n’est pas inclus dans I'},

J={(a,d)|ze € Net [Ta—q &N ou xaya & O}
Les normes discrétes L2, L™ et la semi-norme discréte H' sont définies pour tout
0h = (Va) gep e pAT
1/2
lonlno = [B" 3 2| . lvnllaee = max ol
a:maeﬂih“t a.xaeﬁh

et
1/2

2
Va+d — Va

h

vl = > h"
o,d:zq €QINt

et Toq€NPt

Dans la suite de ce chapitre, dans les différentes inégalités, C' sera utilisée pour des
constantes indépendantes de h et de f.
Introduisons maintenant la notion de régularité qui sera nécessaire sur le domaine :

Définition 3.1. Un domaine 2 est dit r-smooth, si pour chaque point zg € I' il existe
un cone centré en zg d’angle strictement plus grand que 7/2 et de rayon r, inclus dans Q.

Enongons maintenant le résultat principal de ce chapitre, le résultat de convergence :

Théoréme 3.1 (Convergence, cf. [25] Théoréme 1]). Supposons que ) est r-smooth, pour
r >0 et est défini par une fonction level-set o € C?(,). Soit u la solution du probléme

2
continu (L.1]), telle que u € C*(Q). Pour o, v suffisamment grands et h < \/7;;0, le systéme

discret (3.1) admet une unique solution uy. Dans ce cas, notant U = (U(‘/Ea))azm[XeQZnt,
alors
1T = wnllno + IV = unllnoo +1U = unlnat < Ch¥|fullcaa).
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Remarque 3.1. 1l est intéressant de remarquer que :

« L’ordre de convergence L? donné dans le Théoréme pourrait ne pas étre optimal
puisque numériquement, on observe une convergence d’ordre 2. De plus, les schémas
différences finies classiques sont également d’ordre 2.

e Pour la norme H', I'ordre de convergence est plus élevé que pour les méthodes
éléments finis. Ce phénomene est bien connu et est appelé supraconvergence (cf.
[35] par exemple).

De plus, la matrice associée au systeme discret est bien conditionnée :

Théoréme 3.2 (Conditionnement, cf. [25, Théoréme 2]). Sous les hypothéses du théoréme
le conditionnement défini par k(A) := ||All2]|[A=Y|2 de la matrice A associée a la
forme bilinéaire ay, vérifie

k(A) < Ch™2,

Ici, || - ||2 est la norme matricielle associée a la norme euclidienne.

Ces deux théorémes seront prouvés a la Section dans le cas 2D pour des raisons
de lisibilité. Cependant, les preuves peuvent étre étendues de la méme fagon en ajoutant
les indices correspondants en 3 dimensions.

Remarque 3.2. Dans le cas de conditions de Dirichlet non homogenes u? = (ul),, il est

nécessaire d’ajouter le terme suivant dans le second membre :

1
(‘Pa-l-dug - Soaug+d)(90a+dva — PaVatd)

7Nns ’7
bhh (vp) = 2912 Z

2 2
(a,d)EB Po T Patd

3.2 Lien avec o-FEM

On considére un maillage cartésien 77{9 triangulaire (ou tétraédrique en 3D) de O
avec des nceuds (z,), T, I'ensemble de cellules de T, en intersection avec 2, QFF le
domaine couvert par le maillage 7, et 9QF! sa frontiere. Soit €] I'ensemble des faces de
Trn, coupées par I et ]-“}1; I’ensemble des faces internes des cellules de 7, coupées par I' (cf.
(1.8)). On définit

Vi = {v, € C¥(Q) : vy € P1(K) VK € Ty}

et
Qn = {pn € L*(E}) : pujxx € Po(E) VE € &},

On construit alors le schéma ¢-FEM suivant pour (1.1)) :
Trouver (up,pn) € Vi X Qp, tels que
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Vuy, - Vop, — / Vup, - nup + 7 Z / (un — onpr)(Vh — Pran)
oy, h EecEl E

toh ) /F[nVuth-Wh] = | fon, ¥onsan) € Vi x Qn (32)
FeF} h

Qp,

Cette version du schéma p-FEM est une variante de la version proposée a la Section
ou l'on impose up ~ @ppp par pénalisation sur les faces E € 5}; . La solution wuy est
représentée par ses valeurs u, aux noeuds x,. Si x, et tous ses voisins sont a l'intérieur

de €2, alors (3.2)) donne la discrétisation

—Ug—d + 2Uq — Ugtd
> e e (3.3)
deD

Ainsi, nous obtenons les équations aux noeuds intérieurs mais les inconnues sont
également définies aux nceuds extérieurs a (2, adjacents & un nceud interne.
Si vy, est une fonction de base associée a un tel noeud, alors la contribution fﬂh Vuy, -
Vo, — |, o), Vuy, - nup, et la partie correspondante dans le second membre th fop sont
ignorées. Sinon, on conserve I’équation venant de

% > /E(Uh — onpn)(Vh — Pran), (3.4)

Eeg]

qui a été divisée par h? par cohérence avec (3.3)). Pour toute face E € &, py, et g, sur E
valent pg et gp. En prenant v, = 0 dans (3.4)), cela donne

/;(Uh — onpE)pr =0,

et donc
_ J, E Un¥h

PE =
Jeer,
Finalement, en prenant ¢, = 0 et en remplagant py, (3.4)) devient

EPRACSS =0k

Dans le cas ou F € 5}; est une face de x, a xq14, avec x, dans §2 et 2,14 en-dehors,
et de D,

Pa+d
5 5 Uq — Uu €en T
upy — fE uhgthOh B Lpg+@i+d (SOaer a ~ Pa a+d> a
= =
fE Ph 4p3+$i+d (Spauoﬂrd - ‘Pa+dua> €N To+4d

de sorte que la contribution a (3.5)) sur cette face E est donnée par

¥ 1

Wm(%mua — Patiatd)(Patdla — Pavatd),
«
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qui est du méme ordre que le terme de pénalisation by. Des formules similaires sont
valables pour les autres configurations des faces F € 8,1; . On obtient finalement la matrice
qui représente , qui doit étre ajoutée a la matrice qui représente (3.3]).

Finalement, la « ghost penalty »,

ch 3 /F - Vup[n - Vou), (3.6)

FeF]

qui sera également divisée par h? peut étre approchée a la maniere des différences finies.
Ainsi, en considérant un noeud z, & U'intérieur de €2 tel que x4 soit & Uextérieur de 2
avec d € D, les deux cotés (z4—q — Ta) €t (o — Tarq) adjacents & x,, sont dans .7-“,1; et
les contributions sur ces cétés peuvent étre approchées par

—Ug—d + 2Uq — Uatd _ —Va—d T 2V — Vatd
h h '

3.3 Preuves des théorémes de convergence

La majorité de la littérature [59) [50] analyse les méthodes différences finies en utilisant
le formalisme des méthodes éléments finis ou volumes finis [49] pour des problémes
elliptiques. Nous avons fait le choix ici de suivre le formalisme éléments finis.

Introduisons les normes discretes L2, L™ et semi-H! sur €y, définies pour tout

Up = ('Uoz)a:zath par

1/2
Unllh,0,Qn = Uy » o VRl heo,Q, = MaAX (Vg
[[onll h? ; [[onll |val
T Q:xo EQp
et
1/2
_ B2 Va+d — Va 2
vnlna,0, = Z 7
a,d:xq€Q
or X4 q€S2

Comme dit précédemment, nous allons ici nous concentrer sur le cas 2D, mais les
situations en dimensions supérieures peuvent étre traitées similairement.
Dans cette situation le probleme peut étre réécrit sous la forme : trouver une fonction
discrete up, = (ui5);; définie sur €, telle que

an(un, vn) = lp(vn),
pour toute fonction discrete v, = (v;5)i; définie sur €, ot
an(un, vp) = (—Apup, vp) + bp(un, vu) + Jn(un, vn)

et

In(vn) =Y fijvij
(2]
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avec le Laplacien discret :

Ajs — U1 — W] 7 — Ui i1 — Wi i
_ J i—1,j i+1,5 1,j—1 4,j+1
(—Apup,vp) = ) % Vij,

1,5] (24,y5) €EQ

une pénalisation pour les conditions de bord

0% 1
bn(unsvn) = 73 > D71 or Pt — it ) (Piv1 Vi — Pijlieis)
(i,))eB, Fii T Pitlj

2

" —5 (i jr1Uij — PijUij+1)(Pij+1Vij — PijVij+1)
(.92, Pt Plin

et la stabilisation pres du bord

3 —Uim1y F 2u — Uiy —Vie1g 20 — Vig

Jn(up,vp) =0 . .

(4,9)€Jz

—Uj 1+ 2Uj — Uil | Vi1 T 205 — V541
+ Z X
4 h h
(%])eJy

avec vy, o > 0 et
By = {(4,7)| le segment (x;,y;) — (xi+1,y;) intersecte I' et est non inclus dans I'},

By = {(t,7)| le segment (z;,y;) — (xi,yj4+1) intersecte I' et est non inclus dans I'},

Jo = (0, 5)[(ws, ;) € Qet [(xi—1,y5) € Qou (wir1,y5) € A},
et
Jy = {(Zaj)‘(x%yj) € et [(‘Tiayj—l) € 2 ou (wiayj+1) ¢ Q]}

Introduisons maintenant quelques résultats intermédiaires, nécessaires pour prouver
les théorémes and Le premier résultat est une adaptation du Lemme 3.3 de [2§],
qui sera central dans la preuve de convergence.

Lemme 3.1. [l existe ag € (0,1), ag € (0,1/2) et > 0 tels que

2
+ a9

2

+ 8

ul_u02 2

h

pour tous ug, uy,us € R.

Uz — Uy
h

U1 — uo
h

ug — 2u1 + us
h

<o

Preuve. Pour tous a, b€ Ret e, § >0,

1 €
a® < lal(Ja— bl +[b]) < 5= +*(\a—bl+\b\)2

2
1
§2—€a + b2+€]a—beH— ( b)?
1 . g
< — — _
< @+ SO+ S(1+ D)a— b
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3
Pourazzetézg,ona
2 7 € 1
2 < Z 2 71)2 (1 - —b 2
a_3a+16 +2(+5)(a )7,
ce qui entraine la conclusion. ]

Lemme 3.2. Pour tout > 0, il existe o € (0,1) tel que pour tous u;; € R

2 2

U1o — Ugo ugo — uao[* _ o (|10 = 200 ugo — u1 |
h h = h h
+3 U11 — uo1 2 U11 — Uio 2 Up1 — Uo2 2
h h h
00 — 2u10 + uap | U0 — 2ug1 + g2 |
n 00 hlo 20 00 h01 02 > .37

Preuve. 11 est seulement nécessaire de prouver que pour tout 4 > 0, il existe a € (0, 1)
tel que pour tout u;; € R
2 2

U1l — uQ1 Up1 — U2
h h

2 2

U20 — U10
h

U0 — U0
h

U20 — U10
h

+4 (a
2
) . 38)

En effet, le second membre de (3.8)) est plus petit que celui de (3.7). On consideére

U0 — Qo
h

2
+

2
+

2
U1 — U10

h

U0 — 2uo1 + Uo2
h

2
oo — 2u10 + U2p

* h

lu10 — ugo|? + |uz0 — w0l — B (|U00 — 2u0 4 u2o|® + uoo — 2u01 + uo2|2)
o = sup

luro — uoo|® + |ugo — uio|® + B luir — uor|* + B lur1 — wiol* + B |uor — U02£27 )
3.9

N

ou

D := |u1g — ugo|* + |uzo — wo|* + B lurr — uo1|* + Blurr — uio]® + B [uor — uoa|* # 0.
Sans perte de généralité, on peut supposer que

|uto — woo| + [u20 — uro]® + B Jurr — uor|* + B Jurr — uiol” + B uor — ug2|* =1 (3.10)
et

> uij = 0. (3.11)
ij

En effet, si D # 1, on peut diviser tous les u;; par D. De plus, il est possible de soustraire
Zi’j u;; aux u;; dans (3.9) sans changer la définition de «, et donc les u;; peuvent étre
choisis de sorte que (3.11]) soit vérifiée. De plus, on a clairement o < 1.
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Montrons que ’ensemble de w;; vérifiant et (3.11) est uniformément borné. On
note ;; = u;j — ugo pour tout (z,7) # (0,0). Alors, peut s’écrire
o] + |tino — w10]” + B |1 — tor|* + B |ur1 — tiro|* + Bliior — wo2|* = 1.
On en déduit que
[uro] <1, |ugol <2, |un| <1+1/8, |up| <1+42/8, |ugz| <1+ 3/8. (3.12)

En utilisant (3.11]) et I'inégalité triangulaire,

Z(Uij — ugp)

)

> i

)

|6ugo| = <6+46/8.

Ainsi, Jugg| <1+ 1/6. De plus, en utilisant (3.12)), |u;;| < 2+ 3/5. Alors,
pour tout (z,7).
Puisque 'ensemble de u;; satisfaisant (3.10) et (3.11)) est fermé, borné et de dimension

finie, le supremum dans la définition de « est atteint. On suppose que o« = 1. Puisque
B # 0, il existe u;; tel que

luty — uo1|? + Ju1r — wiol® + |uor — woz|® + uoo — 2u10 + uso|? + |uoo — 2ue1 + uez|* = 0.
On en déduit que w11 = up1 = u1g = ug2, et donc

|ugo — 2u10 + uzo|* + |ugo — ui0]* = 0.
Finalement ugg = w19 = uog ce qui est en contradiction avec (|3.10)). ]

Les lemmes [3.1] et nous permettent de déduire la coercivité de la forme bilinéaire
ap :

Proposition 3.1 (Coercivité). Il existe ¢ > 0 tel que, pour tout uy,
an(un,un) = |||un|lf7,
ot

1 ) 1/2
el = (tenlf a0, + Cun, ) + G, un))

Dans la preuve suivante ainsi que dans le reste de ce chapitre, la notation suivante
sera utilisée : pour tout i, j,
_ PijUitlj — Pitl,jUi

W 3.13
(4,5)—(i+1,5) Pij — Pitl,j ( |
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FIGURE 3.2 — Cas N; > 2 dans la preuve de la Proposition

Preuve de la Proposition[3.1 Fixons l'indice j et supposons que les noeuds (z;,y;) ap-
partenant a €, sont pour ¢ € {M;,..., N;}. Sans perte de généralité, on peut supposer
que M; = 0.

Cas N; > 2 : On se place d’abord dans la situation représentée a la Figure

On remarque que

N;j—1
> (—uic1 + 2uij — tig )i
=1
N;—1
= - (U’OJ - uly])u’oJ + (uNj_l’j - uvaj)uNjaj + Z |ul+1"7 o ul]’2
i=0

(1 (1)
Commengons par estimer le terme (I). En utilisant la notation (3.13]), on remarque que

2 2
=V ©0,5 T PLj ug jpo,; — o P1,j
O7j -
C— 1 /2 2
8007] QOLJ (100,j + Sol,j
2 2
P05 TP

(PO,j (UO,J' — ulyj)) . (3.14)

uh o e
©0.j — PLj ( (0,5)—(1,5) \/W

Puisque ¢g; > 0 et ¢1,; <0, on a
/ 2 2
. 300, -+ (1017 .
£0. <let X2 "7 <, (3.15)

\ /(,0%7]. + (pij Yo, — ¥

(1) < [(uoj — urg)uffy ;) | + (w0 —u1 ).

De plus, en utilisant 'inégalité de Young avec € > 0 et le Lemme avec a1 € (0,1),
ag € (0,1/2) et > 0, on observe que

0<

Alors,

1 €
(I) < ?g(ufo,j)—(l,j)ﬁ + (1 + 2> (w0 — u1,)?
1 €
< oWl + (1 + 2) (arfurg — uogl* + azluz,j — u1 )

g
+ (1 + 2) B’UQ — 2uq +u0]2.
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De fagon similaire,
(1) < 5 (uf ?
= 9e (N = 1L5)—(Nj.g)
€
+ (1 + 2) (efun,—1,5 — un, j* + azlun; 2,5 — un;-1,4[%)

€
+ (1 + 2> ﬂ|uNj,2 — QUNJ.,1 + UNJ.P.

Puisque N; > 2, en notant o = max{a1, 22}, on a

N,;—1 Nj—
JZ (Ztim1 + 2Uij — Ui15)i (1 _a( € > uHLJ uig |
=1 h2 g 1=
N;—1 2 2 N;—1
1S Wl gy)” (1+€> g3 |t 2 = i
2 & h? 2 — h
=0 i=1
Up2
*
E Q
: U01 U1y
®-------- *
: : r
o —co---- Pt

Uoo U20

FIGURE 3.3 — Cas N; = 2 dans la preuve de la Proposition

Cas N;j=2:0na:

(—uo,j + 2u1,j — ugj)ur,;
—(uo,5 — u1j)uo + (u1j — ug)ug + |ur; — ugj|* + Jugy — uyyl?

< (w0 = urg)ufy .yl + oy — w1 ) + [(uzg —wij)ufy ;) o)+ (uzg —u1y)*.

On a également (z9,y;), (2,y;) € Q et (x1,y;) € . Le cercle contenant (0,0), (2h,0),

v 10 2
(0,2h) est de rayon Th. Alors, puisque 2 est r-smooth, pour h < \/—:70, sans perte

de généralité, on peut supposer que l’on se trouve dans la situation représentée a la
Figure Ainsi, d’apres le Lemme on obtient la méme conclusion que dans le cas
précédent.
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)
+ (1 — 2;) by (up, up) + (1 — <1 + ;) i) Jn(un,up),

ce qui donne le résultat désiré, en prenant ¢ tel que a (1 + %) < 1 et v, o suffisamment
grands. O

Conclusion : En combinant les deux cas,

ap(up,up) > (1 -« (1 + ;)) (Z

i7j

Uit1,j — Uij
h

2
Wij+1 — Uij
+ 3|

Jst

Remarque 3.3. Comme vu précédemment dans la preuve, I'hypothése du Théoréeme [3.1]
peut étre remplacée par les deux hypotheses suivantes :
o Si (Tig1,v5), (Tic1,y5) € Qet (z5,y;) € Q alors, il existe k,1 € {—1,1} tel que
(@itks Yjt1)s (Tivr Yj21), (26, Y1) € Q.
o Si(xi,yj41), (Ti,yj—1) € Qet (x4,y;) € Q alors, il existe k,l € {—1,1} tel que
(Tiths Yjt1)s (Titok, Yjrt), (Tivksyj) € .

Pour la preuve du Théoréme [3.1] nous aurons également besoin de l'inégalité de
Poincaré suivante :

Lemme 3.3. [l existe Cp > 0 tel que pour tout vy, = (vij)ij,

lonlf cc.0, + IonlE 0.0, < C (Ionl7 1.0, +1%Bn(0n,0n) ) -

Preuve. Fixons I'indice j et supposons que le premier et le dernier (z;,y;) appartenant a
Qy, sont pour i € {M;,..., N;}. Sans perte de généralité, on peut supposer M; = 0. Pour
tout ¢, on a

i-1
vij = v0j + O (Vkt1,j — Ukj)-
k=0
Alors
’ i—1
v?j < 2v(2)j +2(1—1) Z(vk_ﬂ,j — vkj)2.
k=0

En notant L le maximum des diametres de €, (i.e. la plus grande distance entre deux
points de Q4), N; < CL/h (C > 0), on en déduit que

ak 2 L 2 2L2 & 2
Zvij < 20Evoj +2C ﬁ Z (Uz’—i-l,j — Uij) .
=0 =0

En utilisant (3.14]) et (3.15)),
v < 2(ué,j)—(i+17j))2 +2(vo; —v15)",

ce qui donne la conclusion. O
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Preuve du Théoréme[3.1. Démontrons maintenant le Théoréme [3.1] Premiérement, on
remarque qu'il existe Cy > 0 tel que pour tout f € C?(Q) et tout h < hg avec hg > 0, il
existe une extrapolation % € C* de la solution u de (T.1) telle que

[@lleacg,) < Collullesa)-

Soit @ une telle extrapolation. On note f = —Ad et U = (15)i; = (@(xs,;))ij. Enfin, on
note e;; = i;j — u;j et ey, = (e;5)ij. D’apres la Proposition

1
lllenlll7 < —an(en, en)-
Puisque uy, est solution de (3.1)),
an(un,en) =Y fijeij-
ij

Alors,

A — U1 — Uit i — U j—1 — Ui jo1
ap(en,en) = — Z <— . & R = _fij> €ij

o h?
1,5] (24,y5 ) €Q

(I)
+b,(U, en) +n(U, en) -
—_—— ——
(1) (I11)

Estimons chacun des termes :
Terme (I) : En utilisant I'inégalité de Cauchy-Schwarz,

Aty — i1,y — i1,y — Tij—1 — Uiy 2 >
0 < J > (- - )< [ X 4
i,51(

T3,y )€EQ 1,51 (zi,y5)€Q

Il existe (&,v;) € [xs — h, @i + h] X [y; — h,y; + h] tels que

A0 — Uj—1,j — Tig1,j — Wi j—1 — Ui j+1 h? (04 ota
a 12 :fij—ﬁ @(5@%)4’@(%7%’) .

Puisque le nombre de nceuds dans €, est d’ordre 1/h?%, on déduit

~ ~ ~ ~ ~ 2
Aty — Uim1,j — Ui1,j — Uij—1 — Uije1
Z o h2 - fzg
0,71

xi,y;)EQ

1 nt
< \/h2 X @HUngx(g) < Chllullca(qy-

De plus, d’apres le Lemme [3.3

1 1
Z e%j = ﬁHGhH%,O,Qh <Cp <h2"€h||%71’9h + hbh(ehaeh)> < C’||€h|||%'
0,5] (2,9 )€Q
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Alors,
(I) < Chllulleaylllenl]n-

Terme (II) : On considere w := @/p. Soit (x;,y;) € 0y, tel que (2i41,y;) € Q.
En utilisant les inégalités de Sobolev et de Hardy (cf. [28]),

||chl([I“xl+1]) < C||wH2,[ZEi,$i+1] < C||a||3,[$i,$i+1}'

Ainsi

P(i41)jWij — PijUitl,j

2 2
VEG; T P

’w(l‘i) yl) - w(Ii-‘rl? y])’

Pi+1)5Pij
~ |min{ @5, leisl}

}|w(x27 yl) - w($i+1, yj)|

LOO([.Z’i,QTiJr]]) kucl([$z,$z+1}) S ChQHﬂ/H?),[xi,xi+ﬂ .

< max{ |, [0it1,j
< Chllypl

Puisque le nombre de faces ou la ghost penalty est appliquée est d’ordre %,

(IT) < by (T, T)Y2bp (ep, )2

2 2

c

Ci(j+1)Ui,j — Pijli(j+1)
g - E
h 4
(4,J)€Bx

2 2
‘Pi(j+1) Pij

< OVhllallyg, llleallls-

P(i+1)jUij — Pijlit1,j

3 2
Plv1); T Pij

[llenllln

(’i,j)eBy

Terme (III) : Une nouvelle fois, puisque le nombre de faces ou la ghost penalty est

appliquée est d’ordre %,

3 —Ui-1y + 20 — Uig1,j  —€i-1j + 2005 — €it1,j

(1,9)€Jx h h
- —€i_1,j + 2€;; — €115
< Chllaller,) Y. : . 4 Tl
(4,5)€Jz
o\ 1/2
_ —€i—1,j T 2€i — €it15
< Chl/ZHUHCQ(Qh) ( Z J - J +1,j ) ]
(4,5) €
Ainsi,

(I1T) < Ch' 2|t oo, lenl -

En combinant cela avec le Lemme [3.3[on obtient,
lenllni.0 < Alllenllln < ChY?|fullcao)-

Enfin, en utilisant une nouvelle fois le Lemme [3.3] on obtient les estimations L™ et
L2, O

Démontrons maintenant le Théoréme
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Preuve du Théoréme[3.4. D’apres la Proposition [3.1] et le Lemme [3.3]

an(vp,vp) > C > v

(4,9):(24,y5) €Q
De plus, grace a I'expression de ay,

> ¥

(4,9):(xs,y5)EQ,

ap(vh,vp) <

T Q

ce qui mene a la conclusion.

3.4 Schéma alternatif

Dans cette section, nous proposons une version alternative du schéma , plus
complexe mais offrant un ordre de convergence numérique optimal pour la norme H'.

En 2D, on considere le schéma suivant : trouver une fonction discrete u, = (uij)ij
définie sur 0, telle que

an(up,vn) = lp(vn), (3.16)

pour toute fonction discrete vy, = (v;5)i; définie sur €, ou

an(up, vp) = (—Apup,vn) + b (up, vn) + Jn(un, vn),

avec

¢ ®
Eh(uh ’Uh) = l u(i—l’j)—(i—l-l,j) X U(z 1,5)—(i+1,5)
2h? J 48022+1:j(’012*17j + C‘Oij@ifl,j + (;Dz‘j(;pz%rl j
©
+Z :J D—(ij+1) * U(i,j 1)— (z’,j+1)
@Z,j+1<)01,j 1 + 907,‘]907,’] 1 + Qp’LJQp’L,j—&-l
et

0
UG1 )= (i41,f) = 2Pit1Pi-1Ui = PiPi1Uit] — PiPit1Ui-1,

© ) e N o a1 .
ur . y et v/ . y sont définis de maniére similaire, et le second terme de
(7".7_1)_(7”.7""1) (7'7.]_’1)_(7'7.]_"1) ’

stabilisation est donné par

~ —Ui—1,j + 3Uij — 3Uiq1j + Uita;  —Vi—1,j + 30ij — 3vip15 + Vigoj
Jn(un,vp) ZU(Z . X .

i,J

—Uj j—1 + 3Ujj — 3Uj 41+ Uijr2  —Vi -1 + 30 — 3V 41 + Vi j42
+Z i,] ij . i,] B +2 g ij ; 0] 0, . (3.17)

i3
Les indices (7, j) dans les sommes sont choisis de sorte que tous les nceuds (i — 1, j),

(1,7), (i+1,7) et (i + 2,j) appartiennent a € sauf 1. De méme pour (i,7 — 1), (,7),
(i,7+1) et (i,5 4+ 2).
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Remarque 3.4. Ce schéma est donné en 2D pour des raisons de lisibilité mais est toujours
valable en 3D, en ajoutant les termes correspondant au troisieme indice. Des résultats
numériques en 2D et en 3D pour ce schéma seront donnés en Section [3.5] Pour ce schéma
nous ne proposons pas de résultat de convergence théorique, mais il pourrait étre étudié
dans une future contribution.

Il est important de préciser comment le terme de pénalisation by, est obtenu.
En supposant que u = py avec p = pg + p1(z — x;) et u;; = u(x;, y;), alors

uiy1,; = (o + p1h)vis1j,
Ui = PoPij,
ui—1,; = (po — p1h)Yi-1,;,

ce qui donne

@ _
Ui~ (1) ~ O
En ce qui concerne le terme de stabilisation (3.17)), O u(x;, y;) peut étre approchée a

I'ordre 2 par

(i1, yi) — u(Tio1,9i) ot —3u(xi, vi) + 4u(zirr, vi) — w(@it2, i)
2h 2h ’

ce qui donne le saut de dyu(z;, y;)

—u(zit1,yi) + 3u(xi, i) — 3u(zit1, yi) + u(xizo, vi)
2h

Ainsi, (3.17) est une approximation de (3.6)).

3.5 Résultats numériques

Dans cette section, nous allons comparer les deux schémas aux différences finies ([3.1])
et (3.16) avec d’autres approches :

o -FEM : pour illustrer I'intérét de notre nouvelle approche, il est important de la
comparer numériquement a p-FEM. Pour cela, nous utiliserons le schéma ,
afin d’illustrer les avantages et inconvénients des méthodes éléments finis par rapport
aux approches différences finies;

¢ une méthode éléments finis classique : nous comparerons aussi les résultats avec

une méthode éléments finis standard conforme (cf. Section (11.3)) ;

e l’approche Shortley-Weller : finalement, nous comparerons notre méthode a la
littérature. Pour cela, nous avons implémenté la méthode Shortley-Weller (SW) [91],
9]. Cette méthode a le méme objectif, qui est de traiter les géométries complexes avec
des différences finies. Cependant, la matrice associée n’est ici pas bien conditionnée.
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Les schémas présentés en Sections et [3-4] seront respectivement notés ¢-FD et
©-FD2. Les schémas ¢ FEM utilisés sont implémentés en FEniCS (cf. [60]) et les schémas
différences finies & 'aide des librairies python classiques : scipyE| [88] et nu.mpyE| [45].

Les codes permettant de reproduire les différents résultats sont disponibles a :

https://github.com/PhiFEM/PhiFD.git

Puisque la solution de ¢-FD est définie seulement aux noeuds (z;,;)s; et les solutions
calculées avec FEM ou SW le sont uniquement sur €2, les solutions ¢o-FEM et Standard-
FEM seront interpolées aux nceuds (x;,y;)i; appartenant a 2. Les erreurs relatives seront
calculées dans les normes || - [[4,0, || - [n,00 €t || - ||, définies en Section [3.1}

Il est important de préciser que cette maniere de calculer les erreurs pour les méthodes
éléments finis peut détériorer les résultats en comparaison a la maniere habituelle de
le faire. Cependant, cette méthode permet de comparer équitablement les différents
schémas.

3.5.1 Premier cas test : un exemple 2D

On consideére la solution explicite

(27
u=cos| =7
2

sur le disque centré en (0.5,0.5) de rayon R = 0.3 + le — 10, avec

r= %\/(x —0.5)2 + (y — 0.5)%.

Ce choix de rayon permet de s’assurer que la frontiere exacte coupe une face proche d’un
nceud. Dans ce cas, 'approche SW sera mal conditionnée.

Pour le schéma ¢-FD, 'ordre de convergence théorique de 3/2 est atteint pour la
norme H'! et on observe une convergence d’ordre 2 pour les normes L? et L™ (cf. Figures
et gauche et Table . Le second schéma, ¢-FD2, semble moins précis sur des
grilles grossiéres mais légerement meilleur pour des résolutions plus fines. De plus, ordre
de convergence optimal quadratique est atteint, en particulier pour la norme H'. Le
conditionnement de la matrice est également optimal avec un ordre 1/h? (cf. Figure
droite). Le code python fait moins de 100 lignes (cf. Annexe et n’utilise que les
librairies scipy et numpy, ce qui permet un faible temps de calcul (cf. Figure .

Sur ces figures, il apparait que p-FEM et o-FD ont toutes deux des intéréts dans la
résolution d’EDP. En effet, alors que les erreurs en normes L? et L™ sont relativement
proches pour les deux méthodes, ’erreur H', le conditionnement ou le temps de calcul
sont tres diﬂ’érentslﬂ : approche ¢-FD est bien plus rapide que 'approche éléments finis,
tandis qu’elle conduit & une erreur 1légerement plus élevée sur les dérivées de la solution.

1. https://scipy.org/

2. https://numpy.org/

3. Il est important de prendre en compte ici que les résultats des méthodes éléments finis ont été
obtenus avec FEniCS, qui comme nous ’avons déja précisé précédemment est moins optimisé que la
version FEniCSX.


https://github.com/PhiFEM/PhiFD.git
https://scipy.org/
https://numpy.org/
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—— -FEM —— p-FD —— -FEM —— ¢-FD
—=— Std FEM —<— -FD2 —=— Std FEM —— -FD2 ~

0 swW 1077 e SW

10~*

L? relative error
= =
L 4
L relative error
S

1072
102 10-! 102 10-!

h h

FIGURE 3.4 — Premier cas test : un exemple 2D. Erreurs relatives L? (gauche)
et L (droite) en fonction de la taille de discrétisation pour ¢-FEM, Standard FEM,

Shortley-Weller, ¢-FD et o-FD2.
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FIGURE 3.5 — Premier cas test : un exemple 2D. Erreur relative H' (gauche) et
conditionnement (droite) en fonction de la taille de discrétisation pour p-FEM, standard
FEM, Shortley-Weller, o-FD et ¢-FD2.

| ¢-FEM | Std FEM | SW | o-FD | o-FD2

Erreur L? relative 2.04 2.0 2.01 | 2.05 1.93
Erreur L relative 1.98 1.94 1.95 | 1.96 1.95
Erreur H! relative 2.02 1.17 1.82 | 1.83 1.98

TABLE 3.1 — Premier cas test : un exemple 2D. Ordres de convergence.

De plus, pour les deux schémas ¢-FD, on observe le méme phénomene de supraconvergence,
comme pour la méthode Shortley-Weller. L’ordre de convergence pour la norme H' est
plus élevé que pour les approches éléments finis : O(h%/2) contre O(h).
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FIGURE 3.6 — Premier cas test : un exemple 2D. Temps de calcul en fonction de
erreur relative L? (gauche) et de I'erreur relative H' (droite) pour p-FEM, standard
FEM, Shortley-Weller, o-FD et o-FD2.

Pour conclure ce cas test et notamment justifier notre choix des parametres o et -,
I’évolution de 'erreur relative L? et du conditionnement en fonction de ces parameétres
est représentée a la Figure [3.7] Ces résultats entrainent le choix de o = 0.01 pour les
deux schémas et de v = 1 pour le premier p-FD et v = 10 pour le second schéma.

On remarque a la Figure que Perreur relative L? du second schéma est plus stable
aux variations de o que celle du premier schéma p-FD, ce qui s’explique par la présence
du terme j, d’ordre 2.

3.5.2 Second cas test : un exemple 3D

On considére maintenant une extension 3D du cas test précédent, i.e. la méme solution
explicite, dans une spheére centrée en (0.5,0.5,0.5), de rayon R = 0.3 et

r— %\/(:r ~0.5)2+ (y — 0.5)2 + (2 — 0.5)2.

Dans ce cas également, ’ordre de convergence optimal quadratique est observé en
normes L? et H' (cf. Fig. . De plus, nos deux schémas différences finies ainsi que
I’approche Shortley-Weller donnent de meilleurs résultats que les approches éléments
finis. Il est intéressant de noter qu’ici aussi 'approche p-FEM devient aussi précise en
norme H'! que I'approche différences finies lorsque la taille de discrétisation diminue.
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FIGURE 3.7 — Premier cas test : un exemple 2D. Haut : évolution de ’erreur relative
L? (gauche) et du conditionnement (droite), en fonction de o, avec v = 1 pour ¢-FD
(traits pleins) et v = 10 pour p-FD2 (pointillés). Bas : évolution de 'erreur relative
L? (gauche) et du conditionnement (droite), en fonction de 7, avec o = 0.01 pour p-FD
(traits pleins) et pour o-FD2 (pointillés).

3.5.3 Troisiéme cas test : combinaison avec une approche multigrid

Un autre avantage des grilles cartésiennes est leur compatibilité avec les solveurs

multigrilles (multigrid, [I]) de sorte & améliorer la stabilité et le temps de calcul de la
méthode. La méthode multigrid est basée sur la combinaison de schémas de relaxation et
d’une hiérarchie particuliere de grilles grossieres.
Apres avoir appliqué une méthode de relaxation sur la grille la plus fine, un terme de
correction est obtenu en représentant les résidus interpolés sur la grille grossiere suivante
et en utilisant une méthode de relaxation. De maniére récursive, une hiérarchie de grilles
est obtenue et I'algorithme est arrété lorsque le probléme est sur une grille suffisamment
grossiére, permettant une résolution directe. Dans [34], une description de plusieurs
méthodes itératives est proposée : la méthode de Seidel, de Richardson, de Young ou
encore une méthode de relaxation ou de minimisation des résidus.
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FIGURE 3.8 — Second cas test : un exemple 3D. Erreurs relatives L? (gauche)
et H' (droite) en fonction de la taille de discrétisation pour p-FEM, standard FEM,
Shortley-Weller, ¢-FD et o-FD2.

On trouve également une description d’une méthode multigrid pour résoudre 1’équation
de Poisson sur des domaines généraux avec des exemples numériques dans [41]. Deux
composantes importantes des méthodes multigrid sont les opérateurs de restriction et de
prolongement qui permettent de transférer les informations entre les différentes grilles.
Dans [78], une « sommation par parties » est utilisée, préservant les opérateurs d’interpo-
lation, ce qui permet des approximations précises et stables sur les grilles grossiéres.
Nous allons maintenant proposer une technique similaire & 'approche multigrid permet-
tant un bon compromis entre temps de calcul et erreur.

Pour cela, nous proposons une combinaison de notre schéma ¢-FD avec une
approche multigrid. L’idée est d’utiliser la solution ¢-FD obtenue sur une grille grossiere,
avec un solveur direct, pour initialiser un solveur itératif & une résolution plus fine.
L’algorithme sera décomposé en 3 étapes :

1. Etape 1 : résolution directe sur grille grossiére. On résout une premiere fois
le probléeme sur une grille grossiere N{', obtenant une solution p-FD grossiere uy,
avec un solveur direct.

2. Etape 2 : interpolation sur une grille fine. On considére u; linterpolation
par splines (d’ordre 2) de ug sur une grille fine donnée obj avec Nopj >> No.

3. Etape 3 : résolution itérative sur une grille fine. On calcule une solution
-FD wg sur la grille fine avec un solveur itératif initialisé a u;.

Dans le cas 2D, nous comparerons cet algorithme avec les deux méthodes suivantes :

e Méthode directe : résolution du probléme avec un solveur direct sur des grilles
de résolutions Ny X Ny, puis interpolation de la solution sur la grille fine ngj.
Le solveur utilisé ici est le solveur standard de scipy, i.e. un solveur LU.

e Méthode itérative : la méme méthodologie est appliquée, cette fois avec un
solveur itératif, le Gradient BiConjugué Stabilisé.
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En 3D, notre méthode sera uniquement comparée a une méthode itérative. Les cas
considérés seront les exemples 2D et 3D présentés dans les sous-sections précédentes. La
résolution Ngp; sera fixée a 2200 en 2D et 200 en 3D. Tous les solveurs itératifs ont la
méme tolérance pour les résidus intérieurs relatifs, fixée & 1074

Tous les solveurs itératifs compatibles de la librairie python scipy ont été testés mais
le Gradient BiConjugué Stabilisélﬂ a toujours donné les meilleurs résultats.
Il est d’ailleurs important de noter que le simple gradient conjugué ne peut pas étre
utilisé ici puisque la matrice A n’est pas symétrique.

Remarque 3.5. e Un point intéressant est qu’il est possible avec cette approche,
d’ajouter une étape intermédiaire, avec une premiere résolution itérative sur une
grille de résolution Ng < N1 < Ngpj, afin de réduire le nombre d’itérations néces-
saires lors de la résolution la plus fine. Cependant, sur les cas tests proposés dans
cette section, cette approche n’a pas été nécessaire. De plus, ajouter une telle étape
augmente le nombre de parametres a déterminer : tolérance et nombre maximal
d’itérations du solveur intermédiaire, taille de la grille intermédiaire, parameétres de
I'interpolation intermédiaire.

e Si un schéma ¢-FD est développé dans le futur pour résoudre des problemes non-
linéaires, cette approche pourra étre appliquée aux itérations d’un algorithme de
Newton.

e Dans la Section nous proposerons une adaptation de cette idée a la méthode
p-FEM pour différents problemes, notamment non-linéaires.

Ny =2000 10% No =180
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—*— |terative

—— Multigrid o =1200

—<— |terative

—+— Multigrid
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FIGURE 3.9 — Troisiéme cas test : approche multigrid. Temps de calcul en fonction
de Derreur relative L? pour les méthodes directe, itérative et multigrid, dans le cas 2D
(gauche) et 3D (droite).

Les résultats de la Figure (gauche) illustrent l'efficacité de notre approche par
rapport aux deux autres méthodes de base : en effet, on atteint une meilleure précision
(grice au solveur itératif final) plus rapidement puisque seulement quelques itérations du

4. https ://docs.scipy.org/doc/scipy/reference/generated /scipy.sparse.linalg.bicgstab.html
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solveur final sont nécessaires. Sur la Figure pour les méthodes « baseline » (discrete et
itérative), les valeurs correspondent a la discrétisation utilisée pour la résolution et pour
la méthode multigrid, elles correspondent a la discrétisation utilisée pour la résolution
grossiére. Puisque nous avons choisi d’utiliser 'approche multigrid avec une interpolation
de f et de ¢ de la résolution fine vers la résolution grossiere, les temps de calcul ne
comportent que les temps de résolution du systeme linéaire et le temps d’interpolation
de u de la résolution Ny a Ngp,; pour I'approche multigrid.

Comme dit précédemment, un des problemes de ¢-FD, et de toutes les méthodes
différences finies, est la croissance de la taille du systéme linéaire a résoudre, en particulier
en 3D : la matrice A contient (N +1)8 valeurs pour une résolution N. Ainsi, il sera presque
toujours nécessaire d’utiliser des solveurs itératifs pour résoudre de tels problemes avec
ces approches. Cependant, utiliser un solveur itératif sans solution initiale pour N = 200
revient & résoudre un probléme avec une matrice A contenant plus de 10'3
Alors, méme en utilisant le fait que la matrice est creuse, on obtient un énorme systéme,
extrémement long a résoudre. Comme illustré a la Figure (droite), notre approche
permet d’obtenir les résultats de tels problemes beaucoup plus vite que I’approche naive,
la méthode itérative présentée précédemment.

valeurs.

3.6 Conclusion

Dans ce chapitre, nous avons proposé une nouvelle méthode aux différences finies
inspirée par I'approche p-FEM précédemment présentée, pour la résolution d’EDP
elliptiques sur des géométries complexes. La méthode offre différents avantages : les
matrices produites par la méthode sont bien conditionnées, ce qui assure une stabilité
numérique de la méthode. De plus, le schéma principal proposé atteint des convergences
quasi-optimales, comparables aux autres méthodes de la littérature. Enfin, cette nouvelle
méthode a l'intérét d’étre compatible avec des approches de type multigrid, ce qui a
I’avantage d’améliorer fortement les temps de calcul.



Les méthodes éléments finis combinées aux
réseaux de neurones

Résumé

Dans ce chapitre, nous proposons une méthode pour résoudre des
équations aux dérivées partielles (EDP) en combinant des techniques de
Machine Learning et la méthode p-FEM. Pour cela, nous utilisons le
Fourier Neural Operator (FNO). L’objectif de ce chapitre est d’introduire
cette combinaison et d’illustrer numériquement son intérét. Nous nous
concentrerons ici sur la résolution de deux équations : I’équation de
Poisson-Dirichlet et les équations de 1’élasticité non linéaire.

L’idée clé de notre méthode est de traiter le scénario complexe des
domaines variables, ou chaque probleme est résolu sur une géométrie
différente. Les domaines considérés sont définis par des fonctions level-set
en raison de l'utilisation de 'approche ¢-FEM. Nous présenterons dans
un premier temps le FNO puis nous expliquerons notre approche. Nous
proposerons ensuite deux autres méthodes : p-FEM-UNet et Standard-
FEM-FNO, combinant réseaux de neurones et méthodes éléments finis.
Enfin, nous illustrerons lefficacité de cette combinaison avec des résultats
numériques sur trois cas tests.

Chapitre 4 — Les méthodes éléments finis combinées aux réseaux de
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Comme nous ’avons vu dans ce manuscrit, les méthodes éléments finis permettent
de résoudre des EDP de maniére précise. Cependant, dans certaines applications, il est
nécessaire de résoudre ces équations en temps réel ce qui, comme nous ’avons vu n’est
pas le cas pour les méthodes classiques. Pour obtenir des résultats en temps réel, de
nombreuses méthodes de Machine-Learning ont été développées. Ces méthodes peuvent
étre séparées en deux groupes :

1. Les méthodes physics-based : une des possibilités pour approcher des solutions
d’EDP est de minimiser les résidus de 1’équation ou la fonctionnelle d’énergie
associée a I’équation considérée. Ces méthodes ont alors I'avantage de ne pas
nécessiter des approximations obtenues par exemple par des méthodes éléments
finis. La méthode la plus populaire de cette catégorie est la méthode PINNs [76]
mais on peut également trouver des méthodes telles que les méthodes Deep Ritz
[29] ou Deep Galerkin [83]. Cependant, malgré la promesse initiale de ces méthodes,
on trouve maintenant de nombreuses illustrations numériques indiquant que ces
méthodes ne sont pas meilleures que les méthodes classiques tant en termes de
temps de calcul que de précision, par exemple dans [40)].

2. Les méthodes data-based : une seconde catégorie regroupe les méthodes utilisant des
méthodes type éléments finis pour générer une base de données, permettant alors
d’entrainer un réseau de neurones. Cette étape d’entrainement, bien que lourde en
termes de calcul et de temps, peut étre faite en amont des simulations, pendant
une étape préparatoire. L’intérét est alors de pouvoir obtenir la solution pour
de nouvelles données de manieére quasi-instantanée. De nombreux exemples tels
que U-Net (voir par exemple [77]), les Graph Neural Operator [57], les DeepOnet
[61] et les Fourier Neural Operator (FNO) [58, [56] ont démontré de trés bonnes
performances.

Dans ce chapitre, nous allons principalement nous concentrer sur le FNO qui s’est

montré supérieur aux autres méthodes en rapport cotit-précision (cf. [58]). L’inconvénient
des FNO est la nécessité de grilles cartésiennes afin d’effectuer des FFT (Fast Fourier
Transform), ce qui limite 'implémentation initiale & des problémes posés sur des domaines
rectangulaires. Plusieurs approches ont été proposées pour adapter la méthode a des
géométries plus générales, par exemple 'approche Geo-FNO [56] ou le domaine d’entrée
est déformé en un maillage uniforme latent sur lequel les FFT peuvent étre appliquées.
Nous proposons ici une approche alternative : la géométrie sera encodée par une fonction
level-set et associée aux autres données du probleme. Cela nous permettra alors d’utiliser
la méthode p-FEM pour générer des données.
Nous allons détailler notre nouvelle méthode p-FEM-FNO et la comparer notamment
a deux autres approches : ¢o-FEM-UNet et Standard-FEM-FNO, ce qui permettra de
justifier 'utilisation du FNO par rapport a un autre réseau ainsi que l'utilisation de
w-FEM par rapport a une méthode standard.
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Nous nous concentrerons ici sur la résolution de deux équations, posées sur des
géométries complexes : ’équation de Poisson avec conditions de Dirichlet

{—Au =f, dans ), (4.1)
U =g, surl,
et les équations de 1’élasticité non-linéaire :
—divII(u) =f, dans(,
u =up, surlp, (4.2)

II(u) - n =t, sur I'y,

avec © un domaine de R, d = 1,2, 3, de frontiecre ' = 'p UT'y avec I'p NT'y = 0 pour

(E2).

4.1 La méthodologie o-FEM-FNO

Dans cette section, nous avons choisi de nous concentrer sur le cas de ’équation de
Poisson afin de simplifier les écritures et notations utilisées. Les différences liées au
passage a I’équation seront présentées en préambule du cas test numérique associé
a la résolution de cette équation.

4.1.1 Idée générale

Notre idée est de construire un réseau de neurones qui sera une approximation de
I'opérateur qui associe les données f et g ainsi que la géométrie du probleme a la solution
u de . On souhaite que la solution obtenue soit précise mais, obtenue avec un cofit
de calcul limité, en particulier le plus rapidement possible. L’objectif est d’entrainer ce
réseau a l'aide de données synthétiques générées par un solveur discret (par exemple
une méthode éléments finis classique, ou p-FEM). Dans cette section, nous utiliserons
w-FEM comme méthode de génération de données.

Pour cette approche, nous avons choisi d’utiliser le Fourier Neural Operator, introduit
dans [58] et [52], reposant sur une architecture itérative proposée dans [57]. Ce choix
a été motivé par plusieurs raisons : dans le cas de I’approximation de solutions d’EDP,
les auteurs de [58] ont illustré que les performances du FNO étaient meilleures que de
nombreuses autres approches. De plus, les FNOs pourront étre utilisés pour différentes
équations sans grande modification de l’architecture. Enfin, les FNO et ¢o-FEM sont
compatibles puisque les deux méthodes utilisent des grilles cartésiennes.

4.1.2 L’opérateur “ground truth”

Dans la suite de ce chapitre, par analogie aux approximations éléments finis, sauf
mention explicite du contraire, fx, gn, ©n, up et wy, représenteront les matrices de R™= >y
associées aux approximations P! des fonctions f, g, ¢, u et w, composée pour chaque indice
i =20,...,n, — 1,5 =0,...,ny — 1, des valeurs des évaluations ou des extrapolations
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dans V¥ aux nceuds du maillage 7, de coordonnées (z;,y;), avec z; := i/(n, — 1),
Yj = J/(ny - 1)7 ol

VO = {v, € HY(O) wp|lr e PKT)V T € T,°}. (4.3)

Dans la tradition de la littérature FNO (et réseaux de neurones en général), le FNO
va approcher un opérateur appelé Popérateur “ground truth”, qui sera noté G'. Dans
notre cas, G sera l'opérateur associant f, g, et la géométrie encodée par ¢, a la
solution o-FEM wy, :

g’f . ReXnyX3  _y RnaXnyXxl1

(fn, Py gn) > wh . (44)

Remarque 4.1. 1l est important de noter que wy, est extrapolée par 0 en dehors de €2y,
sans impact sur le FNO puisque ces valeurs ne seront pas vues par la fonctionnelle a
minimiser que nous définirons par la suite. En pratique cette extrapolation sera faite par
FEniCSX ([5l 80, [79] 3]).

4.1.3 Structure du FNO

Il est maintenant nécessaire de présenter quelques aspects essentiels a la compréhension
de l'architecture d’'un FNO. Plus de détails au sujet des Neural Operators en général ont
été proposés dans [57], et en particulier au sujet du FNO dans [58] 52, [56].

Le principe sera de construire une application paramétrique

. Mg XMy X3 Mg XMqy X 1
Gp: RMXmx3  _ Ruaxmyxl

(fr>en,9n) —  we,

qui approche 'opérateur G défini par . On cherche ainsi a prédire une approximation
wy de wp, qui nous permette de reconstruire ug = @rwy + gp, une approximation de
up = ppwp, + g, en suivant le paradigme ¢-FEM, comme illustré a la Figure [£.1] La
variable 6 représente ’ensemble des parametres que ’on devra obtenir par minimisation
d’une fonctionnelle.

Remarque 4.2. Le choix de prédire wy, plutét que directement la solution uy provient du
fait que multiplier la prédiction par ¢y permet d’imposer plus précisément les conditions
de bord. En effet, prédire directement u;, introduira une erreur supplémentaire au bord.
Cependant, 'utilisation de cette approche est restreinte aux situations ou ’on considere
le schéma direct p-FEM. Ainsi, lors de I'utilisation du schéma dual ou dans le cas de
conditions mixtes, cette approche ne sera pas utilisable et il sera nécessaire de prédire la
solution directement. Lors des simulations numériques & la Section [£.4] nous illustrerons
pour le premier cas test la différence entre les deux approches : prédire uy et prédire wy,.

L’application Gy est composée de plusieurs applications intermédiaires, appelées
couches et est définie par

Go=N'oQpoHsoHjoHioHsoPyoN.



4.1. LA METHODOLOGIE ¢-FEM-FNO 109

I @ ®

FIGURE 4.1 — Construction d’une prédiction de p-FEM-FNO pour la résolution de (4.1)).

ugla,

fh
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Dans le cas du probleme de Poisson 2D que nous considérons, chacune de ces couches
agit sur des tenseurs 3D dont la troisitme dimension (le nombre de canauz) varie entre
les couches. Plus précisément, la structure est la suivante :

ge . anxnyXS L anxnyxi’) Py Rnrxnyxnd H anxnyxnd H
4
) Hy R X1y XN Qo anxnyxl N1 anxnyxl ’
ol ng est une dimension suffisamment élevée. Une représentation graphique (adaptée
de [58]) de 'opérateur Gy est donnée a la Figure Les transformations Py et Qg sont
respectivement un embedding dans un espace de dimension élevée et une projection dans

lespace de dimension désirée, toutes deux effectuées par des couches denses (cf. [58]).

Normalisations N et N~' Pour améliorer les performances des réseaux de neurones, il
est bien connu que la normalisation des entrées et sorties du réseau est presque obligatoire
(cf. [T1] par exemple). Nous allons donc appliquer une normalisation canal par canal,
notée N et une dé-normalisation N~!. En effet, pour améliorer les performances de nos
implémentations du FNO, puisque les valeurs des données peuvent étre tres différentes
(notamment entre f et ¢), nous avons décidé de normaliser les données et les sorties,
comme dans [58].

L’opérateur de normalisation est appliqué indépendamment, canal par canal pour cha-
cun des canaux de 'image X. Pour chaque canal C' de X, en notant C*#™ I’ensemble des
valeurs du méme canal sur le sous-ensemble de données d’entrainement, la normalisation
est donnée par

C — mean(C%ain)
NC(C) = ( Std(ctrain) ) ’

ou la moyenne et ’écart-type sont calculés uniquement sur 2. L’opérateur inverse est
lui donné par :
N7YY) =Y x std(Y'") 4 mean(Ytrain) |
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ol Y correspond & un canal de la sortie du FNO et Y'" est le vecteur composé des
solutions de l'opérateur « ground truth » sur les données d’entrainement.

4 tlmes

Gy

FIGURE 4.2 — Représentation graphique de la pipeline po-FEM-FNO pour I'approximation
de solutions de , adaptée de [58]. La partie supérieure représente la pipeline entiére
et la partie inférieure une représentation plus détaillée d’une couche de Fourier. Les
cercles rouges correspondent aux entrées données au réseau et a la solution en sortie
de o-FEM-FNO. On représente les entrées et sorties vues par le FNO dans des cercles
violets, avec en particulier X = (fp, @p, gn). De plus, les fleches noires correspondent a
des étapes internes du FNO et les fleches violettes a des étapes effectuées en dehors du
FNO.

Structures des couches Py et (y La transformation Py est composée d’une couche
fully connected avec ng neurones agissant sur chaque nceud, c’est-a-dire, pour tous
ie{l,...,nz},j€{l,...,ny} et ke {l,...,ng},

P,
Uk - Z kk/ wk’ +Bk07
k=1

avec W € M,,, 3(R), BY? € R™ des paramétres & optimiser.

La transformation @)y est composée de deux couches fully connected de tailles ng
et 1, agissant également sur chaque nceud. La premiere dimension ng est choisie plus
élevée que ny. La combinaison de ces deux couches permet finalement d’obtenir une
solution plus lisse qu’avec une seule couche permettant de passer de la dimension ng4 a la
dimension finale souhaitée, ici 1.

Ainsi, Qg = (Qp,ijk)ijr est définie pour tout X = (Xjjr)ijr par, pour i € {1,...,n.},
Jed{l, ..., ny},
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nQ nd
Q@(X)Z‘j = [Z WS:QU (Z ngj’lXijk/ + B,?G’l> -+ BQ0*2 ,

k=1 k'=1

avec W91 € My, no(R), BY1 € R"Q, W2 € My, 1(R), B2 € R des paramétres
a optimiser et o une fonction d’activation appliquée terme & terme. Pour notre approche,
nous avons choisi la fonction GELU (Gaussian Error Linear Unit) donnée par f(x) = z¢(x)
avec p(zr) = P(X < z) ou X ~ N(0,1), comme dans I'implémentation originelle du
FNO[ et de sa variante Geo-FNOPEL

Structure des couches de Fourier 7—[5 Chaque couche ’Hf; est constituée de deux
applications (cf. [58]) :
Hy(X) = o(C5(X) + By(X)) ,

ou

. Cg est définie par
Cg(X) — f*l (ch]:(X)> c R XNy XngXnq ’

avec W€ € Cn=XnyXnaxna yne matrice de parameétres & optimiser et F, F~! la
FFET réelle et son inverse, définies par :
Pour tous i € {1,...,n.}, j € {1,...,ny} et k € {1,...,nq},

f(X)Z]k - ZXi/j/k€2ﬁw(:£+ijy) s

,[:/j/

et pour Y € Ch=*nyXna

FHY)ign = an/ke_Q‘/j”(fﬂJijy) |

i/j/

o B = (Bg,ijk)ijk est une couche de biais définie pour tout X = (Xj;x)ijx par :
Pouri e {1,...,n.}, j € {1,....,ny} et k € {1,...,nq},

y) "d BK B(Z
By(X)ijie = Y Wi Xijer + By”
k=1
avec W5 € M, (R) et BB € R

Les coefficients de W* et B" composent la quasi-totalité des parametres a optimiser.
Ces parameétres sont soumis a deux contraintes théoriques :

1. https://github.com/neuraloperator/neuraloperator
2. https://github.com/neuraloperator/Geo-FNO
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e Pour que la matrice Cg (X) soit une matrice réelle, on doit 1mp0ser a WC une
ct
contrainte de symétrie hermitienne, c’est-a-dire Wn‘9 . W 9 . En pratique,

puisque l'on utilise une implémentation particuliere de 1a FFT, 1a Real FFT, les
coefficients de Fourier sont stockés dans des matrices de taille n, x (ny,/2+1) et
sont automatiquement symétrisés lors de la FFT inverse. En pratique, il n’y a donc
pas de précautions particulieres a prendre lors de cette étape.

e Les solutions du probleme sont en général tres lisses. Ainsi, lorsque 1'on
applique la RFFT, les hautes fréquences ne servant qu’a assurer la bijectivité,
peuvent étre négligées. On ne gardera ainsi que les m x m premiers coefficients de
Fourier, correspondant aux basses fréquences.

Remarque 4.3. Un aspect intéressant du FNO est le nombre de parameétres a optimiser.
En effet, puisque I'on tronque les hautes fréquences, pour chaque couche Cé le nombre de
parametres est moins élevé que n, X ny X ng X ng. En particulier, le nombre de parametres
ng est indépendant de la résolution des données d’entrée et est donné par

cl B

Py : 3xng+ng 0 0 Qo : ngxng+ng+ngxl+1
—— (o
ng= 4xng +4x2xnixmiiniing+ (ng+2)xng+1
My

Par exemple, pour le premier cas test qui suivra, pour les parameétres choisis, cela
représentera 324577 parametres a optimiser.

Remarque 4.4. Une fois entrainés, les FNO peuvent étre utilisés avec des nouvelles données
pour des résolutions arbitraires n,, n,. Cette propriété de multi-résolution est due a la
structure du FNO utilisant les FFT. Cependant, cette propriété n’est pas directement
compatible avec 'approche o-FEM de par la variation des domaines construits en fonction
des résolutions considérées.

Remarque 4.5 (Phénomeéne de Gibbs et padding). Un probleme usuel de la RFFT
appliquée a des fonctions non périodiques est le phénomene de Gibbs : des oscillations
apparaissent au bord. Pour effacer ces oscillations, on peut utiliser des techniques de
padding : on étend les matrices en ajoutant des valeurs tout autour (i.e. on ajoute des
couches de pixels aux images) avant d’effectuer les calculs. A la fin, on restreint les
matrices & leurs dimensions originales. Il existe différentes méthodes de padding dans
la littérature, mais nous n’utiliserons ici que la méthode de padding réflective (c.f. la
documentation de PyTorchE] pour un exemple). Il est intéressant de noter que puisque
ces phénomenes n’apparaissent qu’au bord du domaine, dans les deux premiers cas test
numériques que nous considérerons, le padding n’est pas nécessaire. Cependant, pour le
troisiéme cas test, nous en aurons obligatoirement besoin.

4.1.4 Choix de la loss function

Nous allons maintenant présenter la fonctionnelle que nous avons choisi de minimiser
pour 'approximation des solutions du probléeme (4.1).

3. https://pytorch.org/docs/stable/generated/torch.nn.ReflectionPad2d.html
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Le choix de cette fonction, appelée loss function sera trés important pour assurer une
bonne précision et variera en fonction du probleme considéré. Un choix de fonctionnelle
adaptée a la résolution de sera proposé en Section

Par construction, une prédiction du FNO sera donnée sur la méme grille cartésienne
que les données d’entrée. Cependant, dans notre approche, les seules valeurs qui nous
intéressent sont les valeurs de la solution sur €. Il est donc nécessaire de définir une
fonction n’agissant que sur les pixels correspondants. Un exemple de données et de
solution (restreintes a 1) est représenté a la Figure

Soit Ngata la taille d’un échantillon de données. On note Ugrye = (Ufhye)n=0
Utrpe = PRWE + g7, la solution ground truth et Uy = (ug)n=0,... Nyn.. AVEC

7---7Ndata Ol\l
ug = opGo(f1s¢n> 9h) + gn = Crwy + gp

la solution ¢-FEM-FNO.
La fonction & optimiser est une approximation de Ierreur moyenne H' sur les données
considérées (cf. Figure pour une justification numérique de ce choix), donnée par

N,
1 data
£ (Usrues Up) = 7 Y (Eolufrues uf) + Er(Urye; uh)) (4.5)
data ,,—
ou
go(u?rue; uz) = Hu?rue - ugH%,sg; ’
et

h h h h
51 (u?rue; ’U,g) = ”vxu?rue - Vz“?”%,sgl + ”vyu?rue - vyugng,Sf )

avec V" lapproximation du gradient par différences finies centrées et Sy est ’ensemble
de pixels correspondant aux nceuds de 7. Enfin, &7 est I’ensemble des pixels de Sy
privé d’une couche de pixels (construit en utilisant le 8-voisinage, cf. Figure pour un
exemple).

Remarque 4.6. Dans 'expression de la loss function , I’erreur est calculée par rapport
a U € non wi,.. Cependant, cela ne signifie pas pour autant que le FNO sera
entrainé a prédire ug. Cela signifie seulement que I'opérateur sera entrainé a prédire une
solution wy qui, multipliée par ¢y, et ajoutée a gy, sera proche de uf:,.. Nous illustrerons
numériquement dans la Section [4.4] U'intérét de prédire wy, par rapport & uj, quand cela
est possible.

4.2 'Trois autres approches

Nous avons pour 'instant considéré uniquement le cas de la méthode o-FEM combinée
a un FNO. Cependant, cette combinaison n’est évidemment pas la seule combinaison
possible. Nous allons maintenant proposer deux autres variantes qui semblent également
tres intéressantes. Il est également intéressant de présenter la méthode Geo-FNO, proposée
dans [56] proposant une autre solution permettant d’appliquer des FNO a des géométries
complexes.
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FIGURE 4.3 — En rouge, la frontiére exacte d'un domaine circulaire. En couleurs (bleu et
gris), Sp. En gris uniquement, ’ensemble S;.

4.2.1 La méthode Geo-FNO

Pour adapter le FNO a des géométries complexes, une approche a été proposée dans
[56]. Cette méthode, Geo-FNO, a notamment surpassé sur différents cas test numériques
la méthode DeepONet [61]. Cependant, son architecture est plus complexe et lourde que
I’architecture classique FNO. En effet, pour traiter les géométries complexes, tout en
conservant la structure du FNO utilisant les FFT, les auteurs proposent de construire
une transformation entre l'espace physique (la géométrie considérée, donnée par exemple
sous la forme d’un ensemble de coordonnées de nceuds d’un maillage) et un espace
latent, construit comme une grille cartésienne. Une fois cette transformation appliquée,
il est alors possible d’appliquer un FNO classique pour déterminer une solution dans
I’espace latent. Finalement, 'inverse de la premiére transformation est appliquée a la
solution « latente », ce qui permet d’obtenir la solution dans ’espace physique. Cette
transformation, dans I'idéal un difféomorphisme, peut étre trés complexe. Par exemple (cf.
[56]), une telle transformation peut étre construite a I’aide de polyndémes de Tchebychev.
Cependant, en pratique, la transformation sera souvent apprise par un réseau de neurones.
Ainsi, cela ajoute de nombreux parameétres a optimiser et plusieurs couches au réseau, ce
qui augmente la complexité et le cotlit (d’entrainement et d’inférence) de la méthode.

4.2.2 La combinaison p-FEM-UNet

Il est naturel de s’interroger sur le choix du réseau a utiliser. En effet, le FNO est
parfaitement compatible avec 'approche p-FEM, mais d’autres méthodes bien connues
telles que les UNet [77] le sont également. Nous avons donc adapté notre approche a un
réseau de type UNet que nous allons présenter.

Le U-Net, introduit dans [77], est une architecture de réseau de neurones convolutifs
congue a origine pour la segmentation d’images. L’innovation principale du U-Net
est sa structure en forme de “U”, composée d'un chemin contractant (encodeur, la
partie « descendante ») pour capturer le contexte et d’'un chemin expansif (décodeur,
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la partie « ascendante »). Contrairement aux architectures classiques de type encodeur-
décodeur, le U-Net inclue des skip connections entre les couches correspondantes du
chemin descendant et du chemin ascendant, permettant de préserver les informations
spatiales fines, i.e. correspondant aux hautes fréquences tronquées dans le FNO. Le UNet
est parfois aujourd’hui adapté et utilisé pour approcher des solutions d’EDP notamment
dans [65] ou dans [30].

Architecture du U-Net La présentation du UNet que nous allons effectuer corres-
pond comme nous 'avons fait pour le FNO a la version que nous avons implémentée
numériquement.

On considere une image d’entrée X € R"™=*™*"d gyec ngy = 3, correspondant aux
entrées (fr, ¢n, gn). L'objectif sera ici de construire un opérateur :

X1y

Gy~ (fn, ons gn) — wo - (4.6)

Cet opérateur prendra donc en entrée une image X, comme pour ¢o-FEM-FNO et
donnera une approximation wy de la solution wy en sortie. L’architecture du réseau
U-Net utilisé est représentée a la Figure [£.4] Ce réseau est construit comme une suite
de couches de convolutions, ot chaque étape « down » est une suite de convolutions,
de max pooling (sauf pour la derniere étape) et de fonctions d’activation (ici ReLu), et
chaque couche « Up » est également construite comme une combinaison de convolutions,
en associant les étapes de skip connection représentées en pointillés sur la Figure [£.4] On
indique également sur cette figure les dimensions des tenseurs en sortie de chacune des
couches.

Finalement, pour notre approche o-FEM-UNet, nous appliquons la méme pipeline
que celle représentée a la Figure a la seule différence que 'opérateur Gy sera remplacé
par Q;JNet. La fonctionnelle £ & minimiser sera également définie par .

Remarque 4.7. L’un des avantages du réseau UNet est sa structure maintenant bien
connue. En effet, de nombreuses évolutions ont été proposées dans la littérature pour
améliorer les performances et pourraient donc étre utilisées en combinaison avec p-FEM.
Nous avons ici choisi de nous concentrer sur la version la plus simple de ce réseau, puisque
pour 'approche FNO, nous avons également considéré la version la plus simple. Il est
important de noter que 'inconvénient de I'implémentation de UNet proposée par rapport
au FNO est le nombre de parametres a optimiser. En effet, en comparaison aux ~ 325000
parametres pour le FNO, dans le cas du UNet, 7753025 parametres sont & optimiser.

4.2.3 La méthode Standard-FEM-FNO

Une autre approche envisageable est la combinaison d’'un FNO avec une méthode
éléments finis classique. En effet, comme nous ’avons dit précédemment cela peut
introduire une erreur d’interpolation dans les résultats mais, ne rend pas la combinaison
impossible. De plus, en construisant une méthodologie adaptée, cette erreur d’interpolation
sera approximativement du méme ordre que 'erreur de prédiction du réseau de neurones.

Pour cette approche, nous allons garder I'idée d’encoder la géométrie par une fonction
level-set.
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FIGURE 4.4 — Représentation de I’architecture UNet utilisée.

Ainsi, il sera nécessaire de générer des maillages conformes précis a partir de fonctions level-
set pour construire la base de données d’entrainement, ce qui augmentera inévitablement
le temps de génération de données par rapport aux approches basées sur p-FEM. Pour
cela, nous utiliserons 'approche proposée en Section [5.1.1] Les données seront alors
générées par des simulations éléments finis classiques sur les maillages générés avant
d’étre extrapolées sur I'espace Vho, défini par (4.3)). Cependant, c’est notamment a cette
étape qu'une premiere erreur d’interpolation sera introduite, puisqu’il sera nécessaire de
passer des nceuds du maillage aux nceuds de la grille cartésienne. De plus, sur les noeuds
de la grille cartésienne extérieurs au maillage conforme, proches de la frontiere de ce
dernier, la solution sera prolongée, de sorte a obtenir une solution sur tous les pixels du
masque utilisé pour le FNO (I’ensemble Sy représenté a la Figure .

La structure du FNO sera la méme que celle présentée précédemment, & la différence
que 'on construira cette fois une application paramétrique

gstd . anxnyxi’) N anxnyxl ’
0 (4.7)
(fh7 (phagh) = ug ,

qui approchera
thd' R X1y X3 N R X1y X1
otd -
(frrnsgn) = up,

ou uy, représente ici 'approximation de la solution éléments finis conformes, extrapolée
sur Vho.
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Pour l'entrainement de cet opérateur, la loss function utilisée sera définie par (4.5)),
oll ull,, sera maintenant donnée par up et uf = G5t4(f1, 7, g7, sera la solution prédite

par opérateur Standard-FEM-FNO (abrégé par la suite en « Std-FEM-FNO »).

4.3 Deétails d’implémentation

Pour I'entrainement des différents modeles, nous avons toujours utilisé la méme
structure algorithmique et le méme algorithme d’optimisation : une méthode ADAM,
avec un learning rate initial a = 0.0005, et des parameétres S; = 0.9, B2 = 0.999 et
e = 1077 pour entrainer les FNO (cf. Algorithme . Pendant les entrainements, le
learning rate est réduit lorsque la fonction £ évaluée sur le jeu de données de validation ne
diminue pas pendant plusieurs itérations. La boucle d’entrainement utilisée est détaillée
a I’Algorithme [2, pour le cas de I'équation ([4.1)). Dans 1'Algorithme (Fi, ', GY)
représente un batch de données. Les batches sont sélectionnés aléatoirement, tels que
Fi= (e, ¢ = (¢5)ker,, G* = (gF)rek, avec K; un ensemble d’indices aléatoires
tels que i € {1,...,nombre de batches}. Les ensembles K; sont eux construits tels que
K;NKj =0 pour i # j.

Algorithme 1 : Etape de lalgorithme ADAM.
Entrées : ¢, 0,1, 51, B2, €, my_1, V4_1.

1 Calculer le gradient : g; < Vf(6;-1)

2 Mise a jour du moment (« momentum update ») :

my < B1-my—1+ (1 —B1) - gt Vg <= P vi—1+ (1= 52) - gt - Gt
3 Correction :
my N - V¢
—t Dy _ Tt
1—p 1—p4
4 Mise a jour des parametres :

A

Op < 01 — 1y — w161

«
Vi + €

Remarque 4.8 (Calibrage du learning rate.). Le learning rate est un parametre critique
a déterminer pour obtenir des résultats précis. Nous n’avons pas inclus de résultats
illustrant notre choix de ce parametre, mais une étude numérique a été réalisée pour
déterminer un parametre « optimal ». Une valeur trop élevée ou diminuant trop lentement
entralne généralement des grandes oscillations des valeurs de la fonctionnelle et donc une
mauvaise convergence. A l'inverse, des valeurs trop faibles ou diminuant trop rapidement
entralnent une convergence lente, parfois vers un minimum local trés éloigné des résultats
souhaités.

Pour éviter de telles situations, il a été nécessaire d’effectuer de multiples entrainements
afin de déterminer la valeur la plus adaptée a notre situation. De plus, nous avons
sélectionné un learning rate scheduler permettant de faire évoluer ce parametre, offrant
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également les meilleurs résultats. Pour cela, le learning rate évoluera ainsi tout au long
de 'entrainement en fonction des valeurs de la fonctionnelle évaluée sur 1’échantillon de
validation.

Pour d’autres variantes d’évolution du learning rate, un travail annexe effectué lors
d’'une SEME et qui figure a ’annexe [B] pourrait étre adapté a cette situation afin
d’améliorer la convergence, en particulier diminuer le nombre d’itérations nécessaires a
I'obtention de résultats satisfaisants.

Algorithme 2 : Algorithme d’entrainement utilisé.

Entrées : 6 : parametres aléatoires initiaux, X = (F, ¢, G) et Yipye : les données
d’entrainement, batch_ size : la taille de batch, A : parametre de

régularisation.
1 pour t=1,..., nombre d’epochs faire
2 pour i =1,..., nombre de batch faire \
Sélectionner un batch (F' L, Gi) C X et Ytiue C Yirue de taille
batch_ size.
Evaluer le modele : Yy = Gy,, ,(F*, ¢", G").
Calculer la loss :
i A 2
L(Yirue Yo) + 3 % batch size Z w;|*
— J > Entrainement
régularisation L?
6 Calculer le gradient de la loss, par rapport aux parametres 0y :
Vo, L.
7 Etape d’optimisation : application de I’Algorithme )
8 Soient (Fual, ¢val, Gval) €t Yial la partie de validation du jeu de données.
9 Evaluer le modéle sur I’échantillon de validation :
Yb = g9ti (Fvab Pval, Gval) . > Validation
10 Calculer la loss : L£(Yyal, Yp). )
11 | Mise a jour du learning rate.

4.4 Simulations numériques

Nous allons maintenant illustrer I'efficacité de notre méthode p-FEM-FNO avec
différents cas test numériques. Dans un premier temps, nous allons considérer I’équation de
Poisson , sur des géométries simples données par des ellipses aléatoires, pour illustrer
la précision et la rapidité de notre méthode, comparée a plusieurs autres techniques et
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en particulier & ¢-FEM-UNet et Std-FEM-FNO. Nous étendrons ensuite notre étude
a des géométries plus complexes. Enfin, nous considérerons un probleme d’élasticité
non-linéaire, I’équation .

Dans les différents cas test, le parameétre ng (nombre de neurones agissant sur chaque
neceud) sera fixé a 20, le nombre de neurones pour la premiere couche de Qg, ng sera
lui fixé a 128. Enfin, on conservera les m = 10 premiers coefficients de Fourier dans les
approches utilisant un FNO.

Comme pour les précédentes simulations éléments finis réalisées dans ce manuscrit,
les données ont été générées avec la librairie DOLFINx ([5], 80, [79] [3]). Les réseaux (FNO
et UNet) ont été implémenté avec la librairie Pytorch|[T 5]|ﬂ

Meétriques d’évaluation Pour évaluer les performances des différentes méthodes, on
définit deux métriques différentes, correspondant & deux versions de lerreur relative L? :

¢ La premiere métrique, utilisée pour calculer I’erreur entre 2 tenseurs, i.e. ’erreur
entre une prédiction p-FEM-FNO et une solution ground truth, est définie par :

50 (utrue; ’U,g)

Nﬂ(utrue) ’ (48)

El (utrue; u@) =

ot ug = @nGo(ns s Gn) + g Utrue = Prwh + gn et No(Uerue) = [[utruellg s,- On
notera également Lo(-) la moyenne de cette métrique sur un ensemble de données.

o La seconde métrique, utilisée pour calculer les erreurs des différentes méthodes par
rapport a une solution de référence éléments finis u.. est donnée par :

1Mo, — trefllo.0e | Jorper (Heuestto — trer)® da

”uref||07ﬂrcf B eref uI2‘ef dx ’

Eo(tget, ug) := (4.9)

ou Ilg , est une approximation de la projection orthogonale L? sur le domaine de
référence Qof (domaine recouvrant le maillage ’77lref, maillage fin conforme sur €2).

4.4.1 L’équation de Poisson-Dirichlet sur des ellipses aléatoires

Considérons premiérement le cas de I’équation (4.1]) sur des domaines définis par les
fonctions level-set

x — xp) cos(6) + (y — yo) sin(h))*
Plaoyolody0) (T, Y) = =1+ ( 0) cos(6) l?( 0) sin(6))

((z — @) sin(0) — (y — yo) cos(0))”
12 ’

_|_

(4.10)

avec

20, yo ~ U([0.2,0.8)), L, L, ~U([0.2,0.45]) et 6 ~U([0,7]).

4. Les codes et données correspondant a ces cas test sont disponibles a I’adresse https://github|
com/KVuillemot/PhiFEM_and_FNO.


https://github.com/KVuillemot/PhiFEM_and_FNO
https://github.com/KVuillemot/PhiFEM_and_FNO
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L’équation permet de construire une ellipse de centre (zg,yo) de semi-grand
axe I, et semi-petit axe [, orientée d'un angle 6 de centre (x¢,yo). Pour ce cas test,
les données sont générées en utilisant une méthode de rejet (dite rejection sampling
method) sur les parametres permettant de s’assurer que chaque domaine construit est
bien totalement inscrit dans le carré unité. Les fonctions f et g de sont données par

& 20’50)2 W 2(,’;1)2> : (4.11)
x y

f(A7NO7H1,Uz,<Ty)(x7 y) = Aexp <_ -

et
9(a,B) (z,y) = « ((:L‘ — 0.5)2 —(y— 0.5)2) cos (Bym) , (4.12)

ot A ~ U([-30,—20] U [20,30]), (po,p1) ~ U([0.2,0.8]> N {¢ < —0.15}), 04, 0y ~
U([0.15,0.45]) et o, B ~ U([-0.8,0.8]).

On génere un jeu de données de taille 2100, séparé en une partie pour ’entrainement,
composée de 1500 données, une partie pour la validation de taille 300 et une partie de test
de taille 300 également, toutes sur des grilles de résolution 64 x 64. Durant I’entrainement,
le jeu de données d’entrainement est lui divisé en batches (sous-ensembles aléatoires) de
taille 32 (correspondant & un ensemble de données considérées pour une évaluation de
L) a chacune des 2000 epochs (époques d’entrainement, c’est-a-dire le nombre total de
boucles parcourant 1’ensemble des batches), comme décrit a I’Algorithme

Remarque 4.9 (Génération de données). Pour la génération des données, on utilise des
éléments finis P! et des interpolations P? des fonctions f et ¢, puisque I'on considere
qu’a cette étape, on peut utiliser un maximum d’informations. Cependant, lors des
comparaisons de méthodes qui vont suivre, nous utiliserons uniquement des interpolations
P! pour une comparaison honnéte des méthodes puisque les approches basées sur les
réseaux de neurones utilisent uniquement les valeurs aux nceuds.

Résultats sur les données de validation Dans un premier temps, on représente
a la Figure (gauche) I’évolution de la fonctionnelle & minimiser, £ évaluée sur un
sous-ensemble aléatoire (de taille 300) des données d’entrainement ainsi que sur les
données de validation, ce qui illustre que la fonctionnelle décroit sur les deux ensembles
de données. De plus, on représente a la Figure (droite), I’évolution de Ly sur les
mémes ensembles de données. Cette représentation permet de remarquer deux choses :
la loss function choisie semble adaptée au probléme puisque la métrique d’intérét (i.e.
erreur relative L?) décroit également.

A la fin des 2000 étapes d’entrainement, on sélectionne le modéle « optimal » corres-
pondant a I’ensemble de parametres minimisant £ sur le jeu de données de validation.
Ce modele sera utilisé par la suite pour les comparaisons de méthodes.

Validation du modéle sur des données de test 1l est maintenant nécessaire d’éva-
luer I'erreur du FNO sur un jeu de données de test.

Cela permettra de vérifier que 'opérateur est bien entrainé et parvient a donner de bons
résultats sur de nouvelles données, et donc se comporte de la méme fagon que sur les
données de validation.
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Evolution of £ on the training Evolution of the relative L? error
and validation sets on the training and validation sets
—— L(train) 1 —— Lo(train)
—— L(validation) ’ —— Lo(validation)

' ' [ ' ' ' ' ' ' ' ' ' ' ' ' '
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000

Epochs Epochs

FIGURE 4.5 — Cas test 1. A gauche (resp. droite), on représente I’évolution de £ (resp. la
moyenne de l'erreur relative L2, Lg) sur un sous-ensemble de 1’échantillon d’entrainement
et sur les données de validation.

/ g up = pwy + g v Utrue = PWiue + g Utrue — Up

27 20 14 7 1 005 002 000 002 004 -024 -015  -007 001 000 -024 015  -007 001 009 124607 224004  440e04 67304

FIGURE 4.6 — Cas test 1. Exemple de données et de solution correspondante, restreintes
a Qp,, avec une erreur (4.8)) de 2.5x 1073, correspondant & I’erreur médiane sur les données
de validation.

Cela permettra également de s’assurer que le modeéle sélectionné précédemment est
optimal parmi tous ceux testés. Pour cela, on génére un nouvel ensemble de 2500 données
et on calcule I’erreur relative L? pour plusieurs modeéles intermédiaires de I'entrainement,
ainsi que pour le modele optimal choisi. Les résultats présentés a la Figure [L.7, semblent
bien confirmer que le modele choisi est optimal parmi ceux considérés.

Comparaison de p-FEM-FNO avec d’autres approches Nous allons maintenant
conclure ce cas test par les résultats les plus importants pour confirmer l'intérét de notre
approche par rapport aux méthodes suivantes :

e ©-FEM : on applique lopérateur « ground truth » GI, sur des grilles de résolutions
64 x 64 (correspondant & une taille de cellule h ~ 0.022), avec op = 1 et des
éléments finis P! ;

e Standard FEM : on utilise une méthode éléments finis classique, avec des éléments
P! sur des maillages avec h & 0.022;
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FIGURE 4.7 — Cas test 1. Erreurs (4.8]) sur 2500 données de test. Le dernier modele, en
rouge, correspond au modele optimal sélectionné.

o p-FEM-FNO : le modéle optimal sélectionné précédemment (entrainé avec 1500
données sur des données de taille 64 x 64) ;

e -FEM-FNO 2 : on applique la méthodologie présentée pour p-FEM-FNO mais en
prédisant cette fois directement la solution ug plutot que wy.
On construit alors U'opérateur

. Mg XNy X3 Ng XNy X1
Gp: RM=*my — RUexmyxl

(fhagphagh) = Ug ,

que l’on entraine en utilisant les mémes données et la méme fonctionnelle £, définie
par (4.5)), avec uy la prédiction du réseau;

e p-FEM-UNet : on entraine 'opérateur (4.6)) avec une nouvelle fois la méme fonc-
tionnelle (4.5)), pendant 2000 itérations.

o Standard-FEM-FNO : on entraine I'opérateur (4.7)) pendant 2000 itérations, avec
des données P! générées sur des maillages avec h ~ 0.022, & partir des mémes
parametres.

e Geo-FNO : on entraine un opérateur Geo-FNO (c.f. Section [4.2.1]), en adaptant
I'approche de [56] (c.f. 'implémentation originale sur GitHub %) a notre situation.
Pour cela, on géneére a partir des mémes parameétres un jeu de données sur des
maillages composés de 1053 nceuds (correspondant au nombre moyen de noeuds sur
les maillages considérés pour I'approche Standard-FEM-FNO). Pour I'entrainement,
la fonctionnelle donnant les meilleurs résultats dans ce cas est 'erreur relative L2.
C’est donc celle choisie pour entrainer I'opérateur utilisé ici.

Les différents opérateurs ont été entrainés avec des ensembles de données construits a
partir des mémes parametres. De plus les différents opérateurs FNO ont été entrainés
avec les mémes hyper-parametres. Enfin, pour générer les maillages conformes nécessaires
pour les approches Standard-FEM, Standard-FEM-FNO, Geo-FNO ainsi que pour les
maillages de référence utilisés pour déterminer les solutions de référence, nous avons
utilisé la méthode de construction présentée en Section [5.1.1

5. https://github.com/neuraloperator/Geo-FNO/blob/main/elasticity/elas_geofno_v2.py


https://github.com/neuraloperator/Geo-FNO/blob/main/elasticity/elas_geofno_v2.py
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Uref Ex(Uref, Ustg) = 2.080 X 1073 Ex(Urer, Up) = 1.900 X 1073 E5(Uer, Ug) = 3.211 x 1073

-11e-029.4e-02 _2.0e-01 _31e-0l 4.1e-01 50e-07 _24e-04 4.9e-04 7.3e-04 9.8¢-04 17e-08 3.3e-04 6.6e-04 10e-03 13e-03 2.2e-08 4.3e-04 8504 13e-03 17e-03
[

FIGURE 4.8 — Cas test 1. De gauche a droite : solution de référence, puis différences
entre la solution de référence et la projection de la solution Standard-FEM (usq), de la
solution ¢-FEM (uy), et de la prédiction (o-FEM-FNO uy).

Le cas test présenté correspond au cas donnant I’erreur relative L? médiane.

=
1
X

Relative L? error Fs
-
o
b
1

1

- 1 1 1 1 1 1 1
©-FEM »-FEM-FNO Std-FEM-FNO ©-FEM-UNET
Std FEM ¢-FEM-FNO 2 Geo-FNO

§xx ‘%
i
TETT

FIGURE 4.9 — Cas test 1. Erreurs relatives L? pour chaque méthode.

Pour comparer ces différentes approches, on considére un ensemble de 300 données de

test. Les solutions déterminées (prédites par les opérateurs et calculées par les méthodes
éléments finis) sont projetées sur des maillages de référence avec des tailles de cellules
hret &= 0.005, comme illustré a la Figure @ On calcule ensuite les erreurs selon la norme
, avec une solution éléments finis calculée sur le maillage fin pour solution de référence.
Les résultats présentés a la Figure [£.9 permettent d’illustrer que 'opérateur ¢-FEM-FNO
parvient a déterminer des solutions avec une précision proche de celle des méthodes
éléments finis. De plus, o-FEM-FNO est pres de 2 fois plus précise que Standard-FEM-
FNO, et 10 fois plus que Geo-FNO. On remarque également que I'approche p-FEM-FNO
donne de meilleurs résultats que o-FEM-UNet, illustrant I'intérét du FNO par rapport a
un classique UNet.
En effet, bien que les performances de p-FEM-UNet soient relativement intéressantes, au
regard des résultats présentés, on peut supposer que pour des performances équivalentes
en termes de précision, il serait nécessaire d’utiliser plus de données et d’entrainer plus
longtemps le UNet. Enfin, on remarque que les performances de o-FEM-FNO-2, bien
que légerement inférieures a celles de p-FEM-FNO, restent toutefois meilleures que celles
de Standard-FEM-FNO et Geo-FNO.
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FIGURE 4.10 — Cas test 1. Erreurs relatives L? en fonction du temps de calcul (en
secondes).

On choisit également de comparer un point important : le ratio erreur-temps de calcul.
Pour cela, on mesure le temps de chacune des méthodes. Pour ¢o-FEM, le temps total
comprend les temps de sélection et de construction des maillages 7}, et ’771F (en incluant le
temps de génération du maillage cartésien), le temps d’interpolation des fonctions f, ¢ et
g, Passemblage de la matrice éléments finis et le temps de résolution du systéme linéaire.
Pour Standard-FEM, le temps total comprend le temps de génération du maillage, les
interpolations de f et g, 'assemblage de la matrice éléments finis et la résolution du
systeme linéaire. Enfin, pour les autres méthodes, on mesure le temps d’inférence de
chaque modele. On représente alors les résultats a la Figure ol chaque marqueur
a pour abscisse l’erreur moyenne et pour ordonnée le temps moyen (en secondes). Les
régions de couleurs ont pour largeur 1’écart type du temps de calcul et pour hauteur 1’écart
type de lerreur, ce qui permet d’illustrer la variabilité de chaque quantité mesurée. Les
résultats illustrent clairement le gain de temps apporté par 1'utilisation de méthodes de
Machine Learning, comparées aux méthodes éléments finis. En particulier, on remarque
que les résultats de o-FEM-FNO, qui sont comparables en termes de précision aux
résultats FEMs, sont obtenus environ 100 fois plus vite.

Dans le Tableau .1} on compare les temps de calcul de chaque méthode. Pour les
méthodes de machine learning, la premiere colonne contient les temps de génération des
bases de données pour chaque méthode ; la deuxieme colonne correspond au temps moyen
d’une itération de ’entrainement de chaque méthode et la troisieme colonne est le temps
total des 2000 itérations de chaque entrainement. Enfin, pour ’ensemble des méthodes,
la derniere colonne contient le temps moyen pour obtenir une solution, mesuré comme
précédemment pour la Figure 4.10
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Méthode Génération | Une epoch | Entrainement | Inférence
p-FEM ~ ~ ~ 0.095
Standard FEM ~ ~ ~ 0.156
o-FEM-FNO 214.2 2.2 4400 0.002
p-FEM-FNO-2 219.8 2.2 4400 0.002
Std-FEM-FNO 687.3 2.2 4400 0.002
Geo-FNO 10619I€| 4.5 13800 0.007
p-FEM-UNet 214.2 3.1 6200 0.002

TABLE 4.1 — Cas test 1. Temps de calcul (en secondes) pour chaque méthode.

Choix de la fonctionnelle £ Nous avons choisi d’utiliser la norme H' (approchée)
comme fonctionnelle & minimiser, plutét que seulement la norme L?. Ce choix est
motivé par le gain en terme d’erreur, illustré a la Figure ou nous avons comparé la
fonctionnelle £ choisie et la loss L? (notée Lg). Ces résultats illustrent que I'utilisation
du gradient dans la fonctionnelle n’est pas obligatoire pour obtenir de bons résultats,
mais améliore tout de méme la précision de la méthode.

X X

S
5 X ¥
£ 102-
[0} o . S
~
=
[}
>
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5] _
o4
1074 =
1 1
Lo L

FIGURE 4.11 — Comparaison des deux fonctionnelles, appliquées au cas test 1.

4.4.2 Second cas test : probléeme de Poisson sur des géométries
complexes aléatoires

Considérons une nouvelle fois le probleme de Poisson sur des géométries plus
complexes, avec les fonctions f et g définies par et , avec f restreinte a des
valeurs positives uniquement. Pour ce cas test, on choisit de considérer des géométries
construites a partir de fonctions level-set ¢ définies par des sommes de 3 fonctions

6. Il est important de préciser ici que I'implémentation de la génération de données n’est pas optimale.
En effet, pour les données Geo-FNO il est nécessaire que toutes les données contiennent toujours le méme
nombre de points, ce qui rend la génération des maillages complexe dans notre cas. Ainsi, le temps de
construction de tels maillages représente ici la majorité du temps de génération de données.
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Gaussiennes, plus précisément :

o(x,y) = —¢Y(x,y) + 0.5 max (z,y), (4.13)
(z,9)€[0,1)2
avec ,
(z — xk)2 (y — yk)2
z,y) = exp [ — — ,
(@, y) kz::l p ( 5o e

ou les parametres xx, Yi, 0 €t v, ainsi que les parametres des fonctions f et g sont
générés a l'aide d’un Latin Hypercube [64]. Les hyper-parameétres d’entrainement sont
les mémes que pour le premier cas test, a I’exception de la taille de batch qui est fixée a
8, et on consideére toujours des grilles cartésiennes de résolution 64 x 64.

Examples of considered geometries and corresponding ¢

I |
U
=

X Gaussian centers

- . ] " - [— " —
0.8 04 0.0 0.4 08 -1.0 0.5 0.0 05 10

FIGURE 4.12 — Cas test 2. Exemples de fonctions level-set données par (4.13), avec les
frontieres I' associées. Les centres des fonctions gaussiennes sont marqués par les croix
noires.

Uref E>(Uref, Ustq) = 1.599 X 1073 Ex(Urer, Up) = 1.615 X 1073 Ep(Urer, Up) = 2.949 x 1073

-17e-02 1.1e-01 2.3e-01 35e-01 4.7e-01 7.0e-08 3.8e-04 7.6e-04 1.1e-03 1.5e-03 3.2e-08 4.7e-04 9.4e-04 14e-03 1.9e-03 4.8e-08 5.6e-04 11e-03 1.7e-03 22e-03
[ [ [

FIGURE 4.13 — Cas test 2. De gauche a droite : solution de référence, puis différences
entre la solution de référence et la projection de la solution Standard-FEM (ugq), de la
solution ¢-FEM (uy), et de la prédiction (o-FEM-FNO wuy).

Le cas test présenté correspond au cas donnant I'erreur relative L? médiane.

Plusieurs exemples de fonctions ¢ sont représentés a la Figure Comme pour le
cas test précédent, 'opérateur est entrainé pendant 2000 epochs, mais cette fois seulement
avec 500 données d’entrainement et toujours 300 de validation. De plus, 'erreur H'!
est également a nouveau utilisée. On compare alors les performances de p-FEM-FNO a
o-FEM, Standard-FEM et Standard-FEM-FNO, sur 300 nouvelles données test. Comme
dans le cas test précédent, on utilisera une solution de référence FEM standard pour
calculer I'erreur. Un exemple de solution de référence est représenté a la Figure [£.13]
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©-FEM
Std-FEM
Std-FEM-FNO
-FEM-FNO

10-2 -
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Xar =t

Relative L? error E
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o-FEM Standard FEM  ¢-FEM-FNO  Std-FEM-FNO Computation time (s)

FIGURE 4.14 — Cas test 2. Gauche : erreurs des 4 méthodes sur 300 données de test.
Droite : erreurs relatives L? en fonction du temps de calcul.

Les résultats présentés a la Figure (gauche) illustrent une nouvelle fois que
o-FEM-FNO est capable d’atteindre une précision comparable a celle de p-FEM et
de Standard-FEM, tout en donnant également de meilleurs résultats que Standard-
FEM-FNO. De plus, les résultats de ¢o-FEM-FNO et Standard-FEM-FNO sont obtenus
significativement plus rapidement, comme cela est illustré a la Figure (droite).

Enfin, la Figure .15] illustre la corrélation entre l'erreur du FNO et la distance de
Hausdorff minimale entre une forme de test et les formes vues pendant I’entrainement.

Hausdorff distance: 1.445e-02 Hausdorff distance: 3.002e-02

—— Linear fitting
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Hausdorff distance: 3.783e-02 Hausdorff distance: 8.674e-02 Hausdorff distance to the closest training Shape

FIGURE 4.15 — Cas test 2. Gauche : Exemples de géométries de test. Les géométries
d’entrainement représentées correspondent a chaque fois a la plus proche (au sens de la
distance de Hausdorff) de la géométrie de test considérée.

Droite : erreurs relatives L? en fonction de la distance de Hausdorff minimale.
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4.4.3 Déformation d’une plaque 2D trouée

Nous allons maintenant illustrer le potentiel de notre approche en considérant un cas
test proche d’une application biomédicale [66] : I’équation d’élasticité non-linéaire (4.2)).

Plus précisément, nous allons considérer une plaque rectangulaire avec 5 trous circu-
laires a l'intérieur. Ce domaine sera noté 2 dont un exemple est illustré a la Figure
Les différentes frontieres de la plaque €2 sont données par :

o 'ty et FbD sont le bord haut et le bord bas de la plaque, comme représenté a la
Figure otl des conditions de Dirichlet sont imposées ;

e I'y est la frontiere de Neumann, composée de :
— FlN et I'y, respectivement le coté gauche et le coté droit de la plaque,
— pour i € {1,...,5}, la frontiere de chaque trou i notée T'.

La plaque est fixée sur Fl]j, (i.e. w = 0), et un déplacement constant up est appliqué
sur I'ly (i.e. des conditions de Dirichlet non homogenes sont imposées). Ces conditions
ainsi que les conditions de Neumann sur Fﬁv et Iy seront imposées de fagon classique,
tandis que les conditions de bord pour les différents trous seront imposées via o-FEM.

Remarque 4.10. On partitionne la frontiere I' comme suit :

imposition standard

5
r=THurpurhyuryu YTy
i=1

——
imposition o-FEM

Le probléme considéré peut étre écrit sous la forme suivante (c.f. [48] eq. (8.28)]) :
trouver le champ de déplacement u € R? vérifiant

—divP(F(u)) =0, dans,
Uu =wup, surlt,
u =0, sur Flb,
P(F(u))'n =0, sur I'y .

On considére ici un matériau Néo-Hookéen compressible, comme a la Section Le
module de Young F est fixé a 0.97 Pa et le coefficient de Poisson v a 0.3.

Le schéma p-FEM

Comme nous ’avons dit précédemment, puisque 'on considére un domaine carré,
une partie des conditions de bord peut étre appliquée avec des méthodes standard.
Il est en revanche nécessaire de construire un schéma p-FEM le plus adapté a cette
situation. Pour cela nous allons utiliser plusieurs level-set. Chacun des trous C; de frontiere

& ={pi=0},i=1,...,5, est défini par

Ci = {pi <0}, avec pi(z,y) = 7”@2 —(z— $i)2 —(y - yi)Q,
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ou (zj,y;,r;) sont les coordonnées du centre du trou et son rayon. Le domaine 2 peut
alors étre défini par

5
Q=S J[ei<0pn(0,1)%
=1
2]

Un exemple de configuration est représenté a la Figure [£.16]

10" 0 I
N O
O O XX

0.00e+00 1. . . 1 7.00e-01

Fb T7777777777777777.
D

FIGURE 4.16 — Cas test 3. Gauche : représentation d’une configuration considérée.
Centre : exemple de déformation. Droite : variations possibles de la géométrie. Les carrés
en pointillés correspondent aux bornes des centres de chaque trou. Les sections rouges
contiennent toutes les variations possibles des trous.

Pour construire le schéma o-FEM, on introduit une nouvelle fois le maillage Ty,
construit a partir de I'interpolation ¢, de ¢, qui couvre ) et on note €}, := UreT;, T

On définit également le sous-maillage 775, contenant toutes les cellules de 7; en
intersection avec I'un des trous :

Tr={TeT,:3i=1,...,5 t.q. ;>0 surun nceud de T}

r
et on note ; := U, 1T
b T . o
Les espaces éléments finis seront construits comme précédemment dans le cas de
I’élasticité linéaire et non-linéaire. Plus précisément, pour & > 2, pour la solution

c 12 212 . k , N
uy, on considérera 'espace éléments finis Vh( ) donné par ([2.26) et I’espace homogeéne
correspondant V}f . Pour imposer les conditions de Neumann sur les différents trous,
on utilisera deux variables auxiliaires y et p. Pour cela, on introduit Qh’Z le domaine

recouvrant le maillage composé des cellules de T, coupées par la frontiere Fﬁv :
Iy N
Ty ¥ =AT € Tn : T NIy, # 0},

avec Ff»Yh = {pin = 0}, ot p; j, est I'interpolation P* de ¢; sur Tp,.
Pour les variables auxiliaires, on considérera les espaces éléments finis Z,(€2}) (défini
par (2.35)) et ng_l)(Qg) (défini par (2.27)). Pour chaque trou 4, les conditions de

Neumann seront imposées via les équations
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y+ P(F(u)) =0, dans Qg’i,
yVo; + pp; =0, dans QZZ )

On obtient alors le schéma ¢-FEM suivant : trouver uy € th, pn € ng_l)(ﬂg) et
yn € Zn() tels que

5
, P Vo (f e 9ot [ @t POE) - (ot Du(PoF) (o)

h

1 1
+35 /F (YN @in+ 7Prein) - (20VPin + 7 anpin)
ol h h

+ Vdiv /QF divyy, - div Zh> + Gh (up,vp) =0,
h

Vo, € VO g, € QUTV(Q)), zh € Zu(9),

Ghp(u,v) :=onh s [P(F(u))n] - [Dy(P o F)(u)vn] ,
h
avec T, 1= 00 \ 0Qp, Dy(P o F)(u)v la dérivée de P évaluée en u, dans la direction v
et Yp, Yu, Vdiv, ON des constantes positives.

Opérateur p-FEM-FNO

Plusieurs aspects de ce cas test le rendent particulierement différent des précédents.
Dans un premier temps, on considére maintenant des conditions de Neumann et de
Dirichlet. De plus, le bord du domaine étant le bord de la grille cartésienne, il sera
nécessaire d’appliquer un padding au bord (c.f. Remarque pour éviter le phénomeéne
de Gibbs. De plus, contrairement aux situations précédentes, la solution obtenue par le
schéma p-FEM est directement la solution du probléme, qui ici est vectorielle. Ainsi, le
FNO prédira directement la solution, comme nous ’avons fait pour 'approche ¢-FEM-
FNO-2 dans le premier cas test. Enfin, puisque les données variables de ce cas test sont
la géométrie et le déplacement up appliqué sur I'Y,, opérateur ground-truth & approcher
est défini par

gT . RannyX2 — RnxXnyXQ
(nsgny) = up = (Ungs Uny)

ou up, et upy sont les deux composantes du champ de déplacement wuy, et gy, est la
composante verticale du déplacement wp imposé au bord, constante sur ’ensemble du
domaine (i.e. gy, = g sur chaque pixel).

Dans ces situations de problemes non-linéaires, les réseaux de neurones ont un grand
avantage par rapport aux méthodes éléments finis classiques. En effet, comme nous avons
pu le voir par exemple dans la Section pour les méthodes classiques il est nécessaire
d’utiliser des solveurs itératifs et souvent plusieurs incréments pour appliquer les forces.
Ce nombre d’incréments peut fortement varier en fonctions des cas, ce qui le rend difficile

(4.14)
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a déterminer de maniere optimale. L’approche o-FEM-FNO quant a elle permet de
déterminer directement la solution sans passer par des itérations ou l’ajout de forces par
incréments.

Génération de données Pour générer les données (entrainement, validation et test),
on se place dans les configurations représentées a la Figure (droite). Les trous sont
placés suffisamment loin des bords de la plaque et les bornes des parametres caractérisant
les trous sont choisis de sorte a éviter des interpénétrations. La génération de parametres
est une nouvelle fois réalisée a 1’aide d’un Latin Hypercube de dimension 16 : 15 dimensions
pour les parametres des différents trous et une dimension pour la condition de bord
(qui appartient & Uintervalle [0.3,0.9]). Les parameétres du schéma o-FEM sont fixés a
Yu = 0.001, v = vgi» = on = 0.01. De plus, on réalise des simulations avec des éléments
finis P? sur des grilles de résolutions 64 x 64 et on ne conserve que les valeurs aux nceuds
pour construire la base de données.

Modification de la fonctionnelle Pour 'entrainement de 'opérateur, on choisit de
minimiser une approximation de la semi-norme H', définie par

1 Naata

&1 (ugrue,x; ug,w) +& (U?rue@ Ug’y)) ’

ou

. _ h h 2 h h 2
gl(“?rue,-?“?,) - ||vazuz:rue,~ - va:ug,| 0,87 + Hvyu?rueg - Vyug,~||0,5f )
Ol Utrue = (Utrue,z» Utrue,y) €t la solution de I'opérateur [l (4.14) et ug = (ug,z, ug,y) est
la solution obtenue par ’approximation Gy.

Remarque 4.11. Utiliser la semi-norme H' plutdt que la norme H! permet dans cette
situation d’améliorer les performances de I'opérateur, en particulier aux bords. Cependant,
une fois 'opérateur entrainé, cela rend ’étape d’inférence plus lourde numériquement que
précédemment. En effet, il faut replacer la solution prédite dans le domaine de référence,
ce qui est fait par soustraction de la valeur moyenne de la prédiction sur le bas de la grille,
la ot la solution doit étre nulle. Cette méthode permet ainsi de simplifier I'optimisation,
puisque la fonctionnelle est moins lourde qu’en utilisant la norme H' tout en améliorant
également les performances en termes d’erreur.

Résultats numériques Nous allons maintenant comparer notre approche a une  mé-
thode éléments finis classique, a p-FEM ainsi qu’a Standard-FEM-FNO et Geo-FNO.
Pour les méthodes éléments finis, on utilisera des éléments P?, avec des maillages dont
les tailles de cellules correspondent a des grilles cartésiennes de résolution 31 x 31. Les
trois méthodes basées sur 'utilisation d’'un FNO sont entrainées avec 200 données d’en-
tralnement, divisées en batches de taille 8 et 300 données de validation, pendant 2000
epochs.

Pour évaluer les performances des différentes méthodes, on considérera I'erreur relative
L? par rapport & une solution de référence e, que I'on notera Lo (e, up,).
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FIGURE 4.17 — Cas test 3. Exemple de déplacement obtenu, pour le cas correspondant
a lerreur médiane de p-FEM-FNO.

Un exemple de déplacement obtenu est représenté a la Figure ol la géométrie
de référence est déformée par la solution correspondante (solution de référence, solution
Standard-FEM, solution ¢-FEM, solution o-FEM-FNO), interpolée sur le maillage de
référence, avec en couleur I'erreur en chaque point par rapport a la solution de référence.

On compare les différentes méthodes sur le jeu de données de test (de taille 300).
Les erreurs relatives L? représentées a la Figure (gauche) indiquent que ’approche
-FEM-FNO est la plus précise parmi les approches machine learning testées. Cependant,
contrairement aux cas test précédents les résultats sont moins précis que les méthodes
éléments finis & nombre de degrés de liberté équivalent. Finalement, on s’intéresse aux
temps de calcul des différentes méthodes. Les résultats de la Figure (droite) illustrent
parfaitement 'intérét de p-FEM-FNO : en moyenne, une erreur relative de 2% (environ
10 fois plus que pour les méthodes éléments finis) est obtenue et cela 1000 fois plus
rapidement que o-FEM et Standard-FEM.

LR

1073 - 102 ‘1‘0' ! 10°
] | | | | . .
»-FEM Std FEM  ¢-FEM-FNO Std-FEM-FNO  Geo-FNO Computation time (s)

Y -FEM Geo-FNO
Std-FEM X p-FEM-FNO

’ K
. %F +  Std-FEM-FNO

1072 -

A

Relative L? error
=
=
1
Relative L? error

FIGURE 4.18 — Cas test 3. Gauche : erreurs relatives L2. Droite : erreurs relatives L2
en fonction du temps de calcul.

4.5 Conclusion

Nous avons présenté une nouvelle approche hybride entre méthode éléments finis et
méthode de Machine Learning, appelée o-FEM-FNO, permettant de traiter le cas de
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géométries complexes. L’étude numérique de cette méthode sur trois cas test a illustré
Iintérét de notre approche. En effet, apres entrainement de la méthode, p-FEM-FNO
permet d’obtenir systématiquement des résultats plus rapides que les méthodes ¢-FEM
ou Standard-FEM. L’approche s’est également montrée plus précise que plusieurs autres
approches combinant ¢o-FEM avec un réseau UNet, Standard-FEM avec un FNO ou
encore Geo-FNO. De plus, la méthode a permis d’obtenir ces résultats en utilisant peu
de données d’entrainement, méme dans le cas de probléemes complexes avec de grandes
variations de géométries.






Quelques résultats en lien avec p-FEM

Résumé

Dans ce dernier chapitre, nous présentons en détail deux outils
utilisés dans les chapitres précédents, permettant d’utiliser en pratique
des fonctions level-set. Dans un premier temps, nous décrirons une
méthode de construction de maillages conformes a partir de fonctions
level-set. Ensuite, nous proposerons deux techniques permettant de
reconstruire des fonctions level-set dans des cas plus généraux a partir
d’images binaires.

Dans une seconde partie, nous présenterons une méthode permettant
de diminuer le temps de calcul de la méthode ¢-FEM en combinant
cette approche a une méthode multigrid. Nous présenterons alors cette
approche, nommée p-FEM-Multigrid et illustrerons numériquement son
intérét sur plusieurs cas test.

Enfin, nous proposerons une derniére méthode, basée sur ’approche
précédente. Cette approche combinera alors les réseaux de neurones
(FNO) avec l’approche @-FEM-Multigrid.

Chapitre 5 — Quelques résultats en lien avec o-FEM

[>.1  L’utilisation de fonctions level-set en pratique| . . . . . .. ... ... 136
[.1.1  Construction d’'un maillage conforme a partir d’une level-set|. 136
[0.1.2  Approximation d'une level-set a partir d'une image binaire|. . 138
.2 o-FEM et 'approche « multigrid »|. . . . .. ... .. ... ... ... 145
[.2.1  Methodologie| . . . . . . ... ... 145
[0.2.2  Resultats numeriques|. . . . . . . .. ..o 148
6.3 ©-FEM-M-FNO : une nouvelle methode hybride] . . . . . . ... ... 150
[0.3.1  Pipeline| . . . .. ... oo 151
[6.3.2  Cas test numeériques| . . . . . .. .. ... 151
b4 Conclusionl . . . . . . . . . . e 156

Ce dernier chapitre sera consacré a la présentation de deux outils utilisés durant
cette these, ainsi qu’a la combinaison de la méthode ¢-FEM avec une approche de type
multigrid. Dans une premiere section, nous présenterons la méthode qui a été utilisée a
plusieurs reprises dans ce manuscrit afin de générer des maillages a partir de fonctions

135



136 CHAPITRE 5. QUELQUES RESULTATS EN LIEN AVEC p-FEM

level-set. Dans cette méme section, nous proposerons ensuite une nouvelle méthode
permettant de reconstruire des approximations de fonctions level-set lisses & partir
d’images binaires. Nous illustrerons alors les intéréts et défauts de cette méthode et nous
justifierons son intérét dans notre situation. Ensuite, la deuxieme section de ce chapitre
sera consacrée a la présentation d’une méthode que nous avons appelée p-FEM-M, pour
p-FEM-Multigrid. Nous présenterons alors l'algorithme ainsi que différents résultats
numériques. Enfin, dans une troisiéme section, nous présenterons une méthode hybride
combinant les avantages de la méthode p-FEM-M et ceux de la méthode ¢o-FEM-FNO.

5.1 L’utilisation de fonctions level-set en pratique

Nous allons maintenant présenter deux méthodes qui ont eu un role essentiel pour les
simulations numériques présentées tout au long de ce manuscrit. La premiére méthode a
été utilisée a de nombreuses reprises pour générer des maillages de géométries complexes.
La seconde méthode proposera une nouvelle technique permettant de construire des
fonctions level-set utilisables notamment pour I’approche ¢-FEM direct.

5.1.1 Construction d’un maillage conforme a partir d’une level-set

Dans un premier temps, nous proposons une approche qui a notamment été motivée
par la nécessité de cas test numériques sur des géométries complexes et la limitation des
mailleurs usuels a des formes classiques (cercles, carrés, ellipses, ...). Ainsi, puisqu’il était
important de comparer la méthode o-FEM a une méthode éléments finis classique, il
était indispensable de considérer des situations ou ’on disposait d’un maillage conforme
pour une level-set donnée, notamment pour calculer des solutions de référence.

La librairie MMG [68], combinée a la librairie PyMeditﬂ offre la possibilité de
construire des maillages conformes a partir d’'une level-set donnée. Un des principaux
atouts de cette librairie est la qualité des maillages construits. Comme on peut le voir a
la Figure pour plusieurs résolutions, les maillages reconstruits sont tres réguliers, ce
qui est tres intéressant numériquement.

Pour évaluer la précision de reconstruction de la frontiere, on utilise I'expression
analytique d’une level-set ¢ donnée par

o(z,y) =r — Ro(1+ Acos(nb)), (5.1)
avec

Ry =0.3,

A =03,

n =9,

r =+/(x—05)2+ (y—0.5)2,

0 =arctan2(y — 0.5,z — 0.5).

1. https://gitlab.com/florian.feppon/pymedit
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FIGURE 5.1 — Exemples de maillages reconstruits a partir de ’expression ¢ définie par

(©-1)

1072 1072

10°¢ 10°¢

10-8 10°8

mingegq, |o(x,y)| —*— minges, |0(z,y)|
maxyzeoQ, ‘(b(T y)‘ maxgeoQ,, |@(T7 y)|

10 10
1 1 =T meanf&@ﬂhl‘ﬁ(% y)'

—<— meangesq, |6(z,y)]

1072 1071 10° 10!
h Cpu time (s)

FIGURE 5.2 — Erreurs de reconstruction au bord en fonction de la taille de cellule (gauche)
et du temps de calcul (droite).

On mesure lerreur |p(z,y)| en chaque nceud de bord du maillage reconstruit et on
s’intéresse & la moyenne, la valeur maximale et la valeur minimale. On représente les
résultats obtenus en fonction de la taille de cellule maximale du maillage reconstruit,
ainsi qu’en fonction du temps de construction du maillage a la Figure Comme on
peut le voir, pour obtenir une précision satisfaisante au bord du maillage, il est nécessaire
de générer des maillages extrémement fins. En particulier, il est tres difficile d’atteindre
une précision de I'ordre de la précision machine au bord.

L’idée étant d’utiliser cette méthode pour construire des solutions de référence, il est
souhaitable de reconstruire le plus fidelement possible le bord de la géométrie exacte.

Pour améliorer la précision au bord des maillages reconstruits, une méthode de
recalage des nceuds de bord est utilisée. Pour cela, on construira dans un premier temps
un maillage initial avec I'approche précédente, permettant d’avoir une initialisation
relativement précise. En sélectionnant ensuite les nceuds de bord du maillage reconstruit,
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il suffit alors d’appliquer I’algorithme suivant & chaque point @; = (z;,y;) du bord,
(k)
25D Z g0 _ (0 V(@)

= i ) (5.2)
vz

K3 7

pour tout £ < N ot N est un nombre d’itérations maximal, ou bien tant que go(azz(-k)) > tol
ou tol est une tolérance fixée, de l'ordre de la précision machine dans notre cas. Un
exemple d’application de la méthode est représenté a la Figure[5.3], ot la précision machine
est obtenue apres moins de 4 itérations pour chaque point.

F1GURE 5.3 — Illustration de l'application de la méthode. Les croix noires sur les segments
bleus correspondent aux nceuds de bord maillage initial. La frontiere exacte est représentée
en rouge et les différentes itérations de 'algorithme (5.2)) pour chaque nceud considéré
sont marquées avec des croix noires. La direction suivie a chaque itération est tracée en
pointillés. Enfin, les segments noirs correspondent aux faces du bord optimal reconstruit.
La figure de droite est un zoom des itérations correspondant au point du milieu sur la
figure de gauche.

On représente a la Figure [5.4] les résultats obtenus pour la situation précédente. On
voit alors que le cofit de calcul supplémentaire est relativement faible, pour un gain de
précision au bord tres important puisque 1’on obtient ainsi des résultats de I'ordre de la
précision machine (10714).

Cette approche a également été utilisée pour des cas 3D, avec le méme gain de
précision comme sur ’exemple proposé a la Figure [5.5

5.1.2 Approximation d’une level-set a partir d’'une image binaire

Comme nous 'avons vu tout au long de ce manuscrit, la méthode ¢-FEM repose sur
I'utilisation d’une fonction level-set. Dans une majorité des cas tests présentés, nous nous
sommes restreints a des géométries simples a décrire (cercles, ellipses, carrés, spheéres,
...). Certains de nos cas tests impliquaient des géométries plus complexes a décrire, par
exemple le second cas test de la Section Cependant, dans ’ensemble de ces cas
test, nous avons toujours considéré des fonctions level-set analytiques.
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FIGURE 5.4 — Erreurs de reconstruction apres recalage au bord en fonction de la taille de
cellule (gauche) et du temps de calcul (droite).

Avg error : 4.48e-04 Avg error : 1.36e-15

FIGURE 5.5 — Gauche : maillage 3D reconstruit a partir d’une level-set donnée.
Droite : maillage adapté au bord.
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En pratique, la construction de telles level-set peut étre complexe en fonction des données
d’entrée dont on dispose (maillage, nuage de points, images, etc). Ainsi pour compléter
les résultats précédemment proposés, nous avons choisi de considérer une situation
plus complexe, en considérant comme données d’entrée une image binaire en 2D. Cette
situation géneére plusieurs difficultés dont la plus importante est la localisation de la
frontiere du domaine représenté par cette image. Pour cela, on considérera par la suite
que la frontiere réelle se trouve sur des pixels associés a l'intérieur du domaine. En
effet, dans le cas d’images binaires, il sera impossible de construire des coordonnées
exactes de points de frontiére uniquement a partir d’une image binaire. Nous allons
donc proposer deux approches de reconstruction de level-set que nous combinerons aux
schémas p-FEM (direct et dual) sur un exemple de résolution du probléme de Poisson
. Nous comparerons alors ces approches a une méthode éléments finis classique en
utilisant 2 méthodes de construction de maillage que nous détaillerons.

SDF-generator Une idée naturelle pour construire une level-set a partir d’un maillage
ou d’une image serait de considérer la distance signée. Pour cela, il existe de nombreuses
méthodes : des méthodes déterministes (par exemple la Fast-Marching-Method [81]) ou
bien des méthodes basées sur des réseaux de neurones, par exemple [74]. On choisit ici
d’utiliser une méthode déterministe, en utilisant la librairie Scipy [88].
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FIGURE 5.6 — Gauche : image binaire. Centre : distance signée reconstruite.
Droite : maillage conforme reconstruit.

Pour ce cas test, on construit une image binaire (contenant la frontiére du domaine
réel) a partir de 'expression . L’image binaire générée est représentée a la Figure
(gauche). On construit alors la distance signée a la frontieére de I'ensemble de pixels noirs,
représentée a la Figure (centre). Enfin, & partir de la méthode présentée a la Section
on utilise cette distance signée pour reconstruire un maillage conforme. Comme
on peut le voir, la qualité au bord du maillage reconstruit est inférieure a la qualité des
maillages représentés a la Figure [5.1] ce qui est évidemment dii a ’approximation de la
frontiére du domaine uniquement par des segments (que 1’on pourrait voir comme les
cotés de chaque pixel). Cela se retrouve également dans les résultats présentés Table
Ainsi, cette méthode génére une perte de précision au bord, mais offre tout de méme des
résultats relativement satisfaisants.
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Cependant, comme nous avons pu le voir notamment avec la Figure la version
directe du schéma o-FEM peut étre tres sensible a la level-set utilisée. En particulier,
dans ce cas test, les résultats lors de 'utilisation de la distance signée étaient nettement
dégradés par rapport a l'utilisation d’une expression plus lisse. Ainsi, plusieurs techniques
de régularisation ont été testées, et nous avons finalement choisi d’appliquer la fonction
tanh a la distance signée calculée avant d’effectuer une interpolation par splines cubiques.

Produit de gaussiennes Dans un second temps, nous avons choisi de proposer une
nouvelle approche, afin de reconstruire des approximations de fonctions level-set caracté-
risant des frontieres plus lisses qu’avec la distance signée.

Remarque 5.1. 11 est important de préciser différents points. Dans un premier temps,
il s’agit une nouvelle fois d’approximations, de par la nature mal posée du probleme
a résoudre. De plus, de par le choix de la forme de la level-set ¢ reconstruite, afin
d’obtenir des résultats satisfaisants il sera nécessaire que les géométries considérées soient
relativement lisses. Enfin, nous ne présenterons la méthode que dans le cas 2D, mais
cette derniére pourra étre étendue a des situations 3D. Cependant, le cotit de la méthode
pourra alors étre relativement augmenté.

Pour cette méthode, I'idée est de construire une level-set sous la forme d’un produit
de fonctions Gaussiennes, définie par

n 2 2
ple,y) = (=1"]] ( —1+exp (—QZQJ - 2?5) ) , (5.3)
J )

N

ou

x; = cos(8;)(z — z0,5) — sin(0;)(y — o) et y; = sin(0;)(z — zo5) + cos(0;)(y — yo,5) -

Pour cela, on cherche a optimiser le choix des parametres 0, g, Yo, [, et [,.
La méthode est séparée en plusieurs étapes :

1. A partir de l'image binaire, on construit deux polygones : le premier contiendra
le domaine, en particulier sa frontiere, et le second sera construit en retirant une
couche de pixels au domaine (i.e. sera le plus grand domaine construit a partir de
I'image, ne contenant pas la frontiere) ;

2. On construit le squelette de 'image avec la librairie Python Scikit-Image [86] (c.f.
Figure gauche) ;

3. A partir du squelette, on détermine des points initiaux ainsi que le nombre de
gaussiennes a utiliser. Pour construire les points initiaux, on utilisera les points de
jonctions de plusieurs branches ainsi que les points de fin des branches. Un exemple
de points initiaux est représenté a la Figure (centre) ;

4. On minimise finalement une fonctionnelle afin de trouver les parametres optimaux et
d’obtenir ¢ comme représentée a la Figure (droite). Le choix de la fonctionnelle
a évidemment une grande importance dans la qualité des résultats. En effet, pour
obtenir une solution ¢ satisfaisante, cette derniere devra capter les oscillations de
la frontiere, sans que ces oscillations ne fassent exploser les dérivées et dérivées
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secondes de la solution. Pour cela, on construit une fonctionnelle qui sera évaluée
en ¢ pour tout Yz 4o 1,.1,.0) (x,y), composée de plusieurs termes :

F(p) = afi(e) + Bf2(p) +vf3(¢) +dfa(e),

filg) = D ) + 20—,y + ()
1y =y 2, 53T,y Faay P @)+ 50y’ )

)
o)=Y o=y,

(z,y)EB;
)= > elz.y)?,

(z,y)€Be

=t ¥ (1 (Lot + D))

Ngn
Y (z,y)eB

ou B, et B; sont les deux polygones construits a ’étape 1, et B est I’ensemble des
coordonnées de la discrétisation de [0, 1] x [0, 1] correspondant a I'image considérée.
Numériquement, toutes les dérivées seront approchées par des différences finies
centrées du second ordre.

% »

F1GURE 5.7 — Construction de level-set a partir d’images binaires.

Remarque 5.2. Bien que cette méthode ne fournisse qu’une approximation de la frontiere
a partir d’une image, elle permet néanmoins de générer des cas tests sur des géométries
particulierement complexes, comme le montre la Figure [5.8] Dans I’exemple présenté, on
constate que ’approximation de la frontiére n’est pas idéale avec les parametres choisis.
Toutefois, une géométrie satisfaisante est obtenue avec seulement quatre gaussiennes. Les
parametres estimés, bien qu’ils ne coincident pas précisément avec ceux de la géométrie
réelle, permettent néanmoins de reconstruire une forme suffisamment complexe pour étre
exploitée dans le cas test 3 de la Section 2.1}

Remarque 5.3. Une adaptation possible de cette méthode est 1'utilisation d’une com-
binaison linéaire de gaussiennes plutét que le produit (5.3)). Ainsi, cela permettra par
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exemple de mieux capter certaines oscillations de la frontiere. Cependant, ’optimisation
sera plus complexe notamment en raison des parametres supplémentaires a optimiser et
de la nécessité d’ajouter des contraintes d’optimisation.

¥

FIGURE 5.8 — Cas d’une géométrie plus complexe. Gauche : image initiale et initialisation
des centres. Droite : solution ¢ obtenue.

Cas test Pour déterminer I'erreur lors de la reconstruction de maillages conformes,
on utilise les deux approches précédentes combinées a la méthode présentée en Section
.13} On compare également ces approches & une méthode permettant de reconstruire
un maillage directement a partir d’'une image, en utilisant la librairie Python nanomeshﬂ
[84].

Pour évaluer les reconstructions de maillage, on utilise une nouvelle fois ’expression
et on calcule l'erreur |p(x,y)| au bord. On obtient alors les résultats présentés
dans le Tableau [5.1 pour des tailles de maillages comparables. On peut notamment
remarquer que la méthode de reconstruction a partir de fonctions gaussiennes offre
approximativement les mémes résultats que I’approche a partir de la distance signée
et que ces deux méthodes semblent légérement plus précise que la version Nanomesh.
On compare également 'approche de référence, pour laquelle le maillage est construit a
partir de ’expression exacte de la level-set.

Référence ‘ Nanomesh | Distance signée ‘ Gaussiennes

Erreur Mini. 0.0 2.3 x 1075 4.5 % 106 2.0x 1076
Erreur Moyenne | 8.0 x 10716 | 2.9 x 1073 1.2 x 1073 1.2 x 1073
Erreur Maxi. | 9.9 x 1071 | 7.7 x 1073 4.3 %1073 4.1 %1073

TABLE 5.1 — Erreurs de reconstruction a la frontiére.

Dans un second temps, on s’intéresse a la résolution de 1’équation de Poisson ,
avec uniquement des conditions de bord Dirichlet (I' = I'p). Le second membre du
probléme sera donné par f(z,y) = 10cos(x — 0.5) sin(7/3(y — 0.5)) et les conditions de
bord par up(z,y) = z cos(y).

2. https://github.com/hpgem/nanomesh
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On considére une nouvelle fois 'expression ([5.1])) pour générer un maillage de référence
sur lequel on calcule une solution de référence via une méthode standard.
On compare alors 9 approches sur la Figure [5.9] :

1. une méthode éléments finis classique avec (en rouge) :

e un maillage généré a l'expression exacte de @, en utilisant 'approche de la

Section (traits pleins);

o un maillage généré a partir de la distance signée & une image binaire (avec
l'approche de la Section |5.1.1)) (traits discontinus);

o un maillage généré a 'aide de Nanomesh (pointillés) ;
2. les schémas ¢-FEM direct (en bleu) et dual (en vert), en utilisant :
o Dexpression exacte de ¢ (traits pleins);

o la distance signée (régularisée avec la fonction tanh) (traits discontinus);
o Dexpression (5.3)) (pointillés);

100

u
H' Relative error

L? Relative error

—e— Direct ¢-FEM
—=— Standard FEM
—<— Dual ¢-FEM

—e— Direct ¢-FEM
—=— Standard FEM
—<— Dual ¢-FEM

10-3

FIGURE 5.9 — Erreurs des différentes méthodes en norme relative L? (gauche) et en norme
relative H' (droite).

On observe sur la Figure différents points tres intéressants. En ce qui concerne les
approches Standard-FEM, sans surprise, les résultats obtenus avec un maillage reconstruit
a partir de la distance signée sont relativement proches de ceux obtenus avec ’expression
exacte. Cependant, les maillages reconstruits & partir de I'image initiale meénent a des
erreurs qui stagnent tres vite et donc des résultats peu précis. Concernant le schéma
o-FEM dual, comme on pouvait s’y attendre, ’expression exacte de la level-set ¢ donne
les meilleurs résultats parmi les trois choix considérés. Cependant, il est tres intéressant
de remarquer que les deux méthodes de reconstruction entrainent des résultats tres
semblables pour la norme L? et la norme H'. En particulier, il est intéressant de noter
que la précision obtenue en norme L? atteint un plateau autour de 1072, liée & 'erreur
de reconstruction de la fonction level-set. Enfin, concernant le schéma o-FEM direct, les
résultats sont tres nettement améliorés lors de 1'utilisation de la méthode basée sur les
Gaussiennes en comparaison a l'utilisation de la distance signée ou a l’expression exacte



5.2. ¢o-FEM ET L’APPROCHE « MULTIGRID » 145

dont les gradients présentent des singularités, bien que la méthode reste particulierement
sensible a I'expression utilisée.

5.2 p-FEM et ’'approche « multigrid »

Dans la Section [3.5.3] nous avons proposé une approche « Multigrid » combinée
au schéma @-FD pour résoudre le probleme de Poisson avec conditions de Dirichlet
homogenes . Une extension naturelle a cette approche est une méthode o-FEM
combinée a la technique multigrid. Cette approche sera particuliérement intéressante a
employer lors de la résolution de problémes non-linéaires qui nécessitent 'utilisation de
solveurs itératifs. Pour cela, nous allons présenter notre approche ainsi que des résultats
numériques pour la résolution de deux problémes. Dans un premier temps, I’équation de
Poisson non-linéaire avec conditions de Dirichlet homogenes, de la forme

{ V- (q(u)Vu) = f, dans , (5.4)

U =0, surl,

ot q(u) est une fonction rendant le probléme non-linéaire, par exemple on considérera
par la suite g(u) = 1 + u?exp(2u). Afin d’illustrer I'intérét de notre méthode et son
applicabilité dans un cas 3D, nous considérerons dans un second temps I’équation de
Poisson-Dirichlet sur une sphere.

5.2.1 Meéthodologie

L’idée de départ est de construire une suite de raffinements 7710,@‘) du maillage cartésien
i), il reste a construire les
domaines et maillages habituels o-FEM : Qg), 7;Li), QE’(i) et 7;1F’(i). On utilise ensuite un
schéma o-FEM pour résoudre chacun des problémes intermédiaires : sur les maillages
grossiers, avec un solveur direct et les maillages fins avec un solveur itératif.

initial 77?’(0). Alors, pour chaque maillage intermédiaire 7710’(

FIGURE 5.10 — Construction des maillages 7;' correspondant & I’algorithme

Différentes itérations des maillages 7;: obtenus en raffinant ’7710 sont représentées a la
figure

La méthode multigrid a appliquer est présentée dans ’algorithme simplifié [3] ou 'on
considere que 'on utilise seulement une étape initiale (résolution grossiére) et une étape
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finale (résolution fine). Cette solution a I'avantage de permettre d’initialiser le solveur
itératif « fin » avec une solution proche de la solution recherchée, et donc de réaliser moins
d’itérations du solveur itératif fin, ce qui représente un gain de temps non négligeable.

L’utilisation de la méthode ¢-FEM offre ici un grand intérét : en construisant
correctement la grille cartésienne initiale, il sera possible de ne raffiner ensuite que
les cellules de 7, et non plus de 77?. On pose ainsi 7',:J = Tp. On construit alors une suite
(T7+1);, raffinements des maillages 777, olt

T ={T e i Tn{en <0} 0},

avec 7}?’0 le raffinement de 7, pour i > 1 et 7;?’0 la grille cartésienne initiale. En effet,
comme représenté a la figure 5.10\7 chaque maillage 773“ est contenu dans le maillage 77;
Ainsi, le colit de construction des maillages 7;12 (pour ¢ > 0) est bien moins élevé qu’en
raffinant plusieurs fois 7;?. On utilisera alors comme nouveau maillage initial, & chaque
itération de raffinement, le maillage 7, précédent (i.e. le maillage le plus clair sur les

figures de [5.11)).

FI1GURE 5.11 — Construction des maillages 771Z correspondant a ’algorithme El
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Algorithme 3

w-FEM-M

« Brute force »

Algorithme 4 : p-FEM-M

[y

®w N o O

10

11
12

13
14

15

16

Entrées : N : nombre d’étapes de
raffinement, Ny : nombre
de résolutions p-FEM
(Ns = 2), n : nombre de
cellules dans chaque
direction
pour ¢ =0 a N, faire
si i =0 alors
Construire EO’(O), avec

n x n cellules

7;10 — 7’}?7(0)

sinon

pour j =1 ad N + 1 faire

T?-(j) _
Rafﬁnor(ﬁ?’(rl))
70 =T,
Construire Ty, 7?, .7-",1; et la
formulation variationnelle

si i = 0 alors
Initialiser le solveur avec

u=20

sinon

Interpoler u (solution
grossiere) sur Ty, (fin)

Initialiser le solveur avec

u = Ihug

Résoudre F'(u,v) =0

[y

© w N o «

10

11

12
13

14
15

16

17

Entrées :

N : nombre d’étapes de
raffinement, Ny : nombre
de résolutions ¢-FEM
(Ns = 2), n : nombre de
cellules dans chaque
direction

pour i =0 a N, faire

si i =0 alors
. (@]
Construire 7'hO ,avec n X n
cellules

O J— 70
L TO=Ty
sinon
0
h = 771
pour j =1 a N + 1 faire

T =

Rafﬁncr(ﬂfl’o)
LT =T
Construire Ty, 7;LF, ]-',1; et la
formulation variationnelle

si i =0 alors
Initialiser le solveur avec

u=20

sinon

Interpoler u (solution
grossiere) sur 7, (fin)

Initialiser le solveur avec

u = IhU[)

Résoudre F'(u,v) =0

Une représentation graphique de la pipeline appliquée dans I’Algorithme (] est donnée

a la Figure dans le cas de conditions de Dirichlet homogenes (i.e. uw = 0 sur I).

Remarque 5.4. La méthode de raffinement appliquée est la méthode classique implémentée
dans le package DolfinX, dont plusieurs étapes sont représentées pour un cas simple a la
Figure |5.13
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Résolution grossiére

Résolution fine

[Solveur itératifj—>

FIGURE 5.12 — Représentation graphique de la pipeline o-FEM-M, dans le cas de
conditions de Dirichlet homogeénes.

Initial mesh Step 0 Step 1 Step 2

F1GURE 5.13 — Exemple de raffinements successifs du maillage initial.

5.2.2 Résultats numériques

Nous allons maintenant illustrer 'intérét de cette approche sur plusieurs cas test
numériques, en comparaison avec la méthode Standard-FEM et la méthode classique
-FEM.

Cas test 1 : résolution de I’équation (5.4) sur un disque Dans un premier temps
nous considérons I’équation ([5.4)) définie sur le disque de centre (0.5,0.5) et de rayon
V2/4. Le calcul d’erreur sera fait & 'aide d'une solution manufacturée radiale satisfaisant

u = 0 sur I', donnée par
(W )
u=-cos| =r
2
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avec r = £+/(z — 0.5)2 + (y — 0.5)2.
On choisit également q(u) = 1 + u3 exp(2.5u) et on calcule analytiquement f.
Le schéma p-FEM utilisé sera le schéma direct ([1.10)), adapté a I’équation (5.4)), écrit
(k)

sous la forme : trouver wy, € V,"’ avec uj, = @pwy, telle que

[ atwn) V- Von = [ atun)(Vun)n - on
QO o9,
+ Gr(un,vp) + Jn(un, vp) */Q [ =0, Yo, € V¥,
h

ou

Jh(u,v) = O'Dh2/

o (div(g()Vu) + ) - div(g(u) Vo),

h

et

Gp(u,v) :==oh Z /E [q(u)Vu-n]-[qu)Vv-n] .

EcF]

Les résultats obtenus par la méthode p-FEM, la méthode éléments finis standard et
notre nouvelle approche p-FEM-M sont représentés a la Figure [5.14] illustrant 1'intérét
de notre approche. Sur ce premier cas test, nous avons fixé la tolérance des solveurs
itératifs pour p-FEM-M & 1075 et avons choisi comme résolution grossiere 1/4 de la
résolution fine : on choisit de faire une résolution grossiere sur une grille N x N puis
on raffine deux fois le maillage avant de résoudre le probléme. Ainsi, notre méthode
atteint ici presque les performances de ¢o-FEM en termes de précision, et les dépasse tres
clairement en temps de calcul. De plus, aussi bien en erreur qu’en temps de calcul, notre
méthode donne de meilleurs résultats que la méthode standard : pour un seuil d’erreur
fixé, p-FEM-M est plus rapide que la méthode standard. On consideére également une
seconde version de o-FEM-M, ou la résolution grossiere est constante a 20 x 20, essentielle
pour l'applicabilité de la méthode que nous présenterons ensuite. Cette approche, notée
©-FEM Multigrid 2 sur la Figure [5.14] donne également de trés bons résultats, aussi bien
en termes d’erreurs que de temps de calcul.

Cas test 2 : Equation (I.I)) sur une sphére Appliquons maintenant notre méthode
a un cas 3D. Pour cela on consideére I’équation (|1.1)), avec une solution de référence

radiale, donnée par
0
u=-cos|—=r
(57)

avec 1 = /(. — 0.5)2+ (y — 0.5)2 + (z — 0.5)2 sur la spheére centrée en (0.5,0.5,0.5),
de rayon R = \/2/4.

Le schéma ¢o-FEM utilisé sera celui introduit en Section a l’équation ([1.10).
Comme nous 'avons vu dans la Section [3.5.3] dédiée a p-FD-multigrid, il est presque
impossible de résoudre ce probléme avec un solveur direct. Ainsi, nous allons comparer
notre approche uniquement a des solveurs itératifs (& chaque fois le Gradient BiConjugué
Stabilisé) pour ¢-FEM et Standard-FEM. Les résultats de la Figure illustrent une
nouvelle fois I'intérét de notre approche, puisqu’elle permet de diminuer I'erreur ainsi
que le temps de calcul.
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1073 =
I —e— o FEM —*— ¢-FEM
- —=— Standard FEM —=— Standard FEM
] 74: —<— -FEM Multigrid 107 = —<— p-FEM Multigrid
6" % -~ ¢-FEM Multigrid 2 — -—<-- -FEM Multigrid 2
[ - ~—
() [
= €
= 5 B0 -
A 2
~ O
~
10-6 = 10° 2
L | ' rrarnng ' rrrnng ' rrrnnng ' rr g
1072 1076 107° 104 1073
h L? Relative error

FIGURE 5.14 — Cas test 1. Gauche : erreurs relatives L? en fonction de la taille de
cellule. Droite : temps de calcul en fonction de lerreur relative L2.

1072 =

D —— oFEM 10 < — FEM
- —#— Standard FEM : —=— Standard FEM
. —<— ©-FEM Multigrid : —<— -FEM Multigrid

L? Relative error
b
1 ol
Cpu time (s)
=

10° =

2x 1072 3x 1072 4x107? 6x 1072 1074 1072 1072
h L? Relative error

FIGURE 5.15 — Cas test 2. Gauche : erreurs relatives L? en fonction de h. Droite : temps
de calcul en fonction de 'erreur relative L?.

5.3 w-FEM-M-FNO : une nouvelle méthode hybride

Finalement, une idée naturelle au regard de ce qui a été présenté précédemment, est
une combinaison des méthodes p-FEM-FNO et o-FEM-M. En effet, entrainer un FNO a
une résolution grossiere fixée permettrait ainsi d’éviter la premiere résolution éléments
finis. Cela a alors plusieurs intéréts en termes de cotit de calcul :

e la génération de données est plus rapide que pour I'utilisation seule de p-FEM-FNO
puisqu’elle peut étre effectuée sur des grilles relativement grossiéres ;

¢ le colit d’entrainement peut également étre réduit puisque les tenseurs peuvent étre
de dimensions réduites (tant en résolution qu’en nombre de données);

e le coiit de p-FEM-M est réduit : la premiere résolution fine est évitée, tout comme
les différentes interpolations sur le maillage initial.
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Cependant, il est important de préciser que cette approche nécessite une étape
coliteuse numériquement. En effet, lorsque 'on effectue une prédiction a l'aide de la
méthode p-FEM-FNO, on obtient une solution sous la forme d’une matrice (ou d’un
tenseur) qu'il sera nécessaire de discrétiser sous la forme d’une fonction éléments finis.
Pour cela, on utilisera les valeurs de la matrice (correspondant aux valeurs nodales)
d’une fonction éléments finis associée. Cependant, cette étape n’est pas optimale sous
FEniCSX et nécessite de construire un mapping entre ’ordre des degrés de liberté de
I’espace éléments finis associé et ’ordre des valeurs dans le tenseur solution.

Remarque 5.5. 1l serait bien évidemment possible de ne pas utiliser la méthode multigrid
et de prédire uniquement une solution initiale pour les solveurs itératifs sur le maillage
a la résolution désirée. On retrouve par exemple cette idée de prédiction utilisée pour
initialiser un solveur de Newton dans [72]. Cependant, cela nécessite alors de générer
des données a la résolution fine et d’entrainer le réseau pour la méme résolution, ce qui
augmente considérablement le coiit de calcul total. De plus, il est alors nécessaire de
construire le maillage 7; a partir de la grille cartésienne maillée finement, ce qui est
également numériquement relativement lourd.

Une autre idée de combinaison entre méthode éléments finis et réseaux de neurones
proposée par [6] démontre également de trés bons résultats. Cette méthode, combinant
PINNSs et Standard-FEM, est construite dans ’idée de corriger une prédiction de réseau
de neurones (effectuée sur un nombre élevé de points) avec une méthode éléments finis
appliquée sur un maillage grossier.

5.3.1 Pipeline

Une représentation graphique de la pipeline de o-FEM-M-FNO est donnée a la Figure
dans le cas de conditions de Dirichlet non homogenes (i.e. u = g sur I').
L’approche consiste en trois étapes importantes :

e Résolution grossiere : prédiction d’une solution grossiére et construction du maillage
T's
o Raffinement : boucle de raffinement pour atteindre la résolution souhaitée ;

o Résolution fine : interpolation de la solution grossiere sur le maillage fin et résolution
p-FEM classique avec un solveur itératif initialisé avec la solution précédemment
déterminée.

5.3.2 Cas test numériques
Cas test 1 : le cas 2D

Pour ce premier cas test, nous allons considérer ’équation avec des conditions
de Dirichlet non homogenes u = g sur I', ou g est donnée par (4.12)). Les géométries
seront définies par des level-set ¢ de la forme ([5.3). Pour entrainement du FNO, on
choisit de générer 500 données d’entralnement et 300 de validation. On effectue 2000
itérations et on cherche a minimiser la fonctionnelle £ définie par . On compare
alors cette nouvelle approche a la méthode p-FEM classique, a Standard-FEM ainsi qu’a
la méthode p-FEM-M présentée précédemment.
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on = Résolution grossiére

T, /iij \% - ~(p-FEM-FNO Gy - .
it ’(,,//, 7
O .

FIGURE 5.16 — Représentation graphique de la pipeline ¢p-FEM-M-FNO, dans une
situation correspondant au cas test 1.

Un exemple de solution obtenue pour ce probleme est représenté a la Figure [5 Dans
les deux situations suivantes, on considére 5 données issues d’un jeu de donnees de test
pour étudier numériquement les différentes méthodes.

Urer [Urer — Ustall = 6.4 X 1075 [lUper — Upllw = 6.0 X 1075 [ltyer — Up_pllw = 5.7 X 1075 ||urer — g, mlw = 5.7 X 105

-14e03 _8.9e-02 18e01 27e-01 36e0l 8.8e-00 16e-05 32e-05 4.8¢-05 6.4e-05 16e-10 _15e05 30e-05 4.5e-05 6.0e-05 1dell 14e05 2.8e-05 42e05 57e-05 Ldell 14e-05 2.8e-05 4.2e-05 5.7e-05
L [ L

FIGURE 5.17 — Cas test 1. De gauche a droite : solution de référence, puis différences
entre la solution de référence et la projection de la solution Standard-FEM (usq), de la
solution p-FEM (u,,), de la solution ¢p-FEM-M (u,—ar), et de la solution
@-FEM-M-FNO (ug ar)-

p-FEM-M-FNO : grilles 16 x 16 On considére dans un premier temps des données
générées sur des grilles cartésiennes de taille 16 x 16. Pour la comparaison, la résolution
grossiére de la méthode p-FEM-M, est réalisée sur une grille de méme résolution.

On choisit alors de comparer les approches pour différentes tailles de grille fine : 32, 64,
128 et 256.
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- —e— o-FEM
- —=— Standard-FEM
. —<— p-FEM-Multigrid
‘ -FEM-Multigrid-FNO

—— o-FEM
—=— Standard-FEM
—<— -FEM-Multigrid

S . -FEM-Multigrid-FNO
5 107°s =
X £ 10
[ - -
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o
1071 =
! '
10~ 1072
h h

FIGURE 5.18 — Cas test 1, données 16 x 16. Gauche : erreur relative L? en fonction
de h. Droite : temps de calcul des méthodes.

On voit alors sur les résultats présentés a la Figure (gauche) que les trois méthodes
basées sur p-FEM donnent des erreurs comparables, moins élevées que les erreurs de
Standard-FEM. Cependant, il est intéressant de remarquer (c.f. Figure (droite))
que ces résultats sont systématiquement obtenus plus rapidement avec I’approche ¢-
FEM-M-FNO. Ainsi, malgré un entrainement réalisé avec des données tres grossieres, on
obtient des résultats déja tres intéressants pour notre approche hybride. Cela se remarque
notamment dans la Table [5.2] ot la méthode donne toujours les meilleurs résultats.

Temps Temps Temps Erreur

Résolution Méthode (grossier) |  (fin) (total) relative
32 x 32 Standard-FEM ~ ~ 0.23 6.06 x 1073
o-FEM ~ ~ 0.28 2.87 x 1073
o-FEM-M 0.16 0.20 0.36 2.96 x 1073
©-FEM-M-FNO 0.004 0.21 0.21 2.96 x 1073
64 x 64 Standard-FEM ~ ~ 0.36 1.56 x 1073
o-FEM ~ ~ 0.41 6.90 x 1074
o-FEM-M 0.16 0.32 0.48 6.85 x 1074
©-FEM-M-FNO 0.004 0.32 0.32 6.85 x 1074
128 x 128 | Standard-FEM ~ ~ 1 3.85 x 1074
o-FEM ~ ~ 0.88 1.71 x 1074
o-FEM-M 0.16 0.70 0.86 1.67 x 1074
©-FEM-M-FNO 0.004 0.70 0.70 1.67 x 104
256 x 256 | Standard-FEM ~ ~ 4.46 9.51 x 107°
o-FEM ~ ~ 2.62 4.31 x 1075
o-FEM-M 0.16 2.17 2.33 4.1 x107°
©-FEM-M-FNO 0.004 2.17 2.18 4.1 x107°

TABLE 5.2 — Cas test 1, données 16 x 16. Résultats des différentes méthodes.
Les temps et erreurs correspondent aux valeurs moyennes sur 5 nouvelles données.
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p-FEM-M-FNO : grilles 32 x 32 Dans un second temps, il est intéressant d’étudier
les résultats de la méthode lors d’un entrainement sur des données plus fines. Pour cela,
on entraine o-FEM-FNO avec des données générées sur des grilles 32 x 32 et on utilise
la méme résolution grossiére pour p-FEM-M. On calcule alors 'erreur des différentes
méthodes avec des résolutions fines sur des grilles 64 x 64, 128 x 128, 256 x 256 et
512 x 512. On remarque sur les résultats présentés a la Figure I'intérét de cette
nouvelle approche. En effet, 'initialisation du solveur étant faite avec une prédiction
plus précise et donc plus proche de la solution, le cotit de calcul est plus faible que pour
toutes les autres méthodes. De plus, a tolérance fixée comme critere d’arrét pour les
solveurs itératifs (107?), les deux approches multigrid offrent ici une meilleure précision
que les deux autres méthodes classiques. On remarque en particulier a la Table que
I’approche o-FEM-M-FNO est toujours la plus rapide en temps total, bien que le temps
de résolution grossiere soit plus élevé que dans le cas 16 x 16, notamment en raison de la
conversion entre les tenseurs numpy et les vecteurs DolfinX.

— —e— -FEM
: —=— Standard-FEM
. —<— ¢-FEM-Multigrid
© === -FEM-Multigrid-FNO

—— o-FEM

—=— Standard-FEM

—<— p-FEM-Multigrid
p-FEM-Multigrid-FNO

10" -

1074 =

Relative L? error
Cpu time (s)

10 <

107° =

FIGURE 5.19 — Cas test 1, données 32 x 32. Gauche : erreur relative L? en fonction
de h. Droite : temps de calcul des méthodes.

Cas test 2 : le cas 3D Pour le second cas test, nous allons comparer les trois méthodes
basées sur I’approche p-FEM. Pour cela, nous considérons le probleme de Poisson avec
conditions de Dirichlet non-homogenes, sur des géométries complexes 3D définies a
partir de fonctions gaussiennes, i.e. en adaptant 1’équation au cas 3D, et donc en
utilisant des fonctions ¢ définies par

i 2 2
gp(l‘,y,z):(—l)n (—1+6Xp <_ 2 2 2 >>’
; 2lx,j 2ly7j 2lz,j
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Temps Temps Temps Erreur

Résolution Méthode (grossier) |  (fin) (total) relative
64 x 64 Standard-FEM ~ ~ 0.39 1.34 x 1073
o-FEM ~ ~ 0.50 7.64 x 1074
©-FEM-M 0.24 0.34 0.58 5.68 x 1074
©-FEM-M-FNO 0.011 0.36 0.37 5.68 x 1074
128 x 128 | Standard-FEM ~ ~ 1.02 3.18 x 1074
©-FEM ~ ~ 1.09 1.90 x 1074
o-FEM-M 0.23 0.75 0.98 1.40 x 10~*
¢-FEM-M-FNO 0.011 0.88 0.90 1.40 x 1074
256 x 256 | Standard-FEM ~ ~ 4.29 7.91 x 107°
©-FEM ~ ~ 3.46 4.71 x 107
o-FEM-M 0.22 2.34 2.56 3.44 x 107°
©-FEM-M-FNO 0.011 2.49 2.50 3.44 x 107°
512 x 512 | Standard-FEM ~ ~ 22.06 2.12 x 107°
©-FEM ~ ~ 13.16 1.18 x 107°
o-FEM-M 0.23 9.12 9.35 8.41 x 1076
©-FEM-M-FNO 0.011 8.62 8.64 8.41 x 1076

TABLE 5.3 — Cas test 1, données 32 x 32. Résultats des différentes méthodes.
Les temps et erreurs correspondent aux valeurs moyennes sur 5 nouvelles données.

avec
1 0 0 C089 sin 0,
Ry(0;) = |0 cosf, —sinf,|, 0 ,
0 sinf, cosb, —sm9 0 cos 0,
cosfl, —sinf, O
R.(0,) = |sin@, cos@, O,
0 0 1

ou ’ensemble des parametres est choisi aléatoirement avec la seule contrainte que la
géométrie construite soit connexe.

Le second membre f et les conditions de bord g sont eux adaptés de et
et sont donnés par

(z — M0)2 (y — M1)2 (2 — p2)?
f(A,MO,[Ll,[,LQ,O’g:,O’y,O’z)(m7 y’ Z) - AeXp <_ 20'2 N 20—5 B 20—2 ’

x z

et
Y(a,p)(T,y) = a ((x —0.5)% — (y — 0.5)2> cos (Bzm) ,

ou les différents parametres sont choisis aléatoirement selon des distributions uniformes.
Pour 'approche basée sur le FNO, on génére un ensemble de 250 données séparées en
200 données d’entrainement et 50 données de validation. Ces données sont générées sur
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des grilles cartésiennes de résolution 20 x 20 x 20 et on réalise un entralnement sur 200
epochs, en utilisant des batches de taille 8 et en fixant le nombre de modes conservés
dans chaque direction a 8. De plus, la fonctionnelle & minimiser est 'adaptation 3D de la
norme H', définie par .

Une fois 'opérateur o-FEM-FNO entrainé, on considére un échantillon de 6 nouvelles
données de test pour évaluer les performances des trois approches o-FEM. Une représen-
tation de 3 des 6 solutions de référence obtenues par Standard-FEM sur un maillage fin
est donnée a la Figure afin d’illustrer la variabilité des géométries considérées.

9.0e-03 _ -12e-03  6.5e-03  14e-02  22e02  -4.8e-02 -24e-02 55004  25e-02  49e-02  -12e-02  -7.8¢-03 -38¢-03  23e-04  4.3e-03
I I I

FIGURE 5.20 — Cas test 2. Représentation de 3 solutions de référence obtenues par
Standard-FEM.

La résolution utilisée pour la génération des données étant fixée a 20 x 20 x 20, afin
de comparer les différentes méthodes, nous considérerons 3 nouvelles résolutions pour
les tests : 40 x 40 x 40, 80 x 80 x 80 et 160 x 160 x 160. Le solveur itératif pour toutes
les méthodes sera une nouvelle fois le Gradient BiConjugué Stabilisé avec une tolérance
de convergence fixée & 10~7. Pour ¢-FEM-M, la résolution grossiére sera réalisée avec
un solveur direct sur une grille de taille N/2. Enfin, pour 'approche ¢-FEM le solveur
itératif sera combiné a un pré-conditionneur LU.

Pour illustrer I'intérét de notre approche ¢-FEM-M-FNO, l'erreur relative L? et
le temps de calcul sont mesurés. Les résultats présentés a la Figure [5.21] ou l'erreur
moyenne est représentée en fonction du temps de calcul moyen (avec les zones de couleurs
indiquant les écarts-types) montrent que p-FEM-M-FNO est systématiquement plus
rapide que o-FEM-M qui elle est plus rapide que ¢o-FEM. De plus les erreurs entre les
deux approches multigrid sont comparables, et plus faibles que celles de la méthode
o-FEM classique.

5.4 Conclusion

Dans ce dernier chapitre, nous avons présenté deux méthodes permettant d’utiliser
des fonctions level-set, bases de la méthode p-FEM en pratique.
Dans un premier temps, nous avons présenté une méthode utilisée pour construire des
maillages conformes & partir de fonctions level-set. Nous avons ensuite présenté plusieurs
méthodes permettant d’appliquer les méthodes p-FEM et Standard-FEM a des images
binaires.
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FIGURE 5.21 — Cas test 2. Résultats obtenus avec les différentes méthodes ¢-FEM.
En haut a gauche : résolution 40 x 40 x 40. En haut a droite : résolution 80 x 80 x 80.
En bas : résolution 160 x 160 x 160.

Par la suite, nous avons proposé une nouvelle architecture, basée sur ’approche
multigrid, permettant de réduire le cofit de calcul de la méthode o-FEM. Une breve étude
numérique a alors mis en évidence les gains offerts par 'utilisation de cette méthode par
rapport a p-FEM ainsi qu’a Standard-FEM.

Finalement, & partir de l'architecture p-FEM-M et de la méthode p-FEM-FNO
présentées précédemment, nous avons construit une nouvelle méthode hybride qui a offert
des résultats tres intéressants, notamment dans le cas 3D puisqu’elle permet de réduire
le cotit de calcul de ’approche p-FEM-M.






Conclusion

Dans ce travail, nous avons introduit et analysé différentes déclinaisons de la méthode
w-FEM, en montrant sa pertinence pour le traitement d’équations aux dérivées partielles
sur des géométries complexes. L’étude s’est articulée autour de plusieurs axes
complémentaires. Nous avons d’abord considéré 'adaptation de la méthode a divers
types de conditions aux limites et d’équations modeéles, telles que le probléme de Poisson,
I’équation de la chaleur et les problemes d’élasticité, ce qui a permis de mettre en
évidence sa robustesse et ses performances par rapport aux approches éléments finis
classiques. Dans un second temps, nous avons proposé une méthode en différences finies,
nommée p-FD, directement inspirée de o-FEM. Celle-ci conserve les atouts théoriques et
numériques de convergence de la méthode initiale, tout en offrant une implémentation
simplifiée.

Une autre direction majeure a été 'intégration de o-FEM avec des approches issues
de I'apprentissage automatique, en particulier les architectures de type Fourier Neural
Operator. L’approche hybride o-FEM-FNO a montré sa capacité a accélérer
considérablement les calculs tout en conservant une précision satisfaisante, cela avec un
volume de données d’entrainement limité, y compris dans des situations complexes.

Parallélement, nous avons étudié la mise en ceuvre pratique de la méthode p-FEM et
de la méthode Standard-FEM a partir de fonctions level-set et d’images binaires.
Enfin, nous avons proposé une architecture multigrid dédiée a la réduction du cofit de
calcul de 'approche ¢o-FEM. La combinaison de cet outil avec ’approche ¢-FEM-FNO
a conduit a une méthode hybride particulierement prometteuse, notamment pour les
problemes tridimensionnels, ol les gains de performance se sont révélés significatifs.

Dans I’ensemble, ce travail souligne le potentiel de la méthode p-FEM, a la fois comme
alternative aux méthodes classiques et comme socle pour des développements hybrides
intégrant des techniques modernes d’apprentissage et de calcul haute performance.

Ces résultats ouvrent néanmoins de nombreuses perspectives de recherche. Les schémas
permettant de traiter les conditions mixtes, que ce soit pour le probleme de Poisson
ou pour les problemes d’élasticité, ont été étudiés numériquement, mais leur 'aspect
théorique reste encore a traiter. De plus, les problemes d’élasticité considérés tout au long
de ce manuscrit étaient limités au cadre statique, alors que ’extension aux problémes
dynamiques constitue un prolongement naturel et essentiel pour la modélisation de
phénomenes concrets. Plus largement, 'adaptation de la méthode ¢-FEM au cadre de
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I’élasticité non linéaire représente un défi théorique et numérique majeur, mais également
une étape incontournable vers des applications concretes, notamment en biomécanique.
La possibilité d’exploiter directement des données issues d’images confere a ¢-FEM un
avantage naturel pour la simulation du comportement mécanique d’organes, domaine
dans lequel la prise en compte d’effets non linéaires est indispensable. L’association de
cette approche avec des techniques d’apprentissage automatique, telles que @-FEM-FNO,
pourrait alors permettre de développer des outils capables de fournir des prédictions
rapides et fiables, ouvrant la voie a des applications en chirurgie assistée par ordinateur
ou en planification thérapeutique personnalisée.

Parallelement, la méthode ¢-FD offre, elle aussi, de nombreuses pistes de recherche.
Son extension aux conditions de Neumann constitue une évolution naturelle du travail
présenté ici. De plus, la compatibilité de sa structure réguliére avec les architectures de type
FNO ouvre la perspective d'une méthode ¢-FD-FNO dont la comparaison avec p-FEM-
FNO serait particulierement intéressante. Enfin, les méthodes hybrides développées dans
ce manuscrit, telles que p-FEM-FNO, o-FEM-M et o-FEM-M-FNO, restent largement a
explorer. Leur application a des problémes dynamiques, a des conditions mixtes ou a des
configurations tridimensionnelles de grande taille constitue un champ de recherche riche.

En conclusion, les contributions présentées dans ce manuscrit témoignent de la richesse
et de la flexibilité de la méthode p-FEM et de ses variantes. Elles montrent que cette
approche, bien au-dela de sa robustesse numérique, constitue un cadre de développement
particulierement adapté aux défis actuels du calcul scientifique, et qu’elle possede le
potentiel de s’imposer comme un outil de référence pour la simulation de phénomeénes
complexes, a I'interface entre mathématiques appliquées, calcul haute performance et
apprentissage automatique.



Annexes du Chapitre

A.1 Exemple de code python pour ¢-FD

import numpy as np
import scipy.sparse as sp
from scipy.sparse.linalg import spsolve

# Radius of the domain
R=0.3 + 1le—10

# Parameter of penalization and stabilization
sigma, gamma = 0.01, 1.0

# Construction of the grid

Nx, Ny = 100, 100

x, y = np.linspace(0, 1, Nx + 1), np.linspace (0, 1, Ny + 1)
hx, hy = x[1] — x[0], y[1] — y[O]

X, Y = np.meshgrid(x, y)

# Computation of the exact solution , exact source term and the
level —set

lambda x, y: np.sqrt((x — 0.5) * (x — 0.5) + (y — 0.5) = (y
— 0.5) + le—12)

K=np.pi / 2 /R

u

f

L]
[

e = lambda x, y: np.cos(K % r(x, y))
= lambda x, y: K * K x np.cos(K * r(x, y)) + K * np.sin(K * r

(x, ¥v)) / r(x, ¥y)

phi = lambda x, y: (x — 0.5) * (x — 0.5) + (y — 0.5) % (y —
0.5) — R * R

phiij = phi(X, Y)

ind = (phiij < 0) + 0

mask = sp.diags(diagonals=ind.ravel())
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indOut = 1 — ind

# Laplacian matrix

D2x = (1 / hx / hx) % sp.diags(
diagonals=[—-1, 2, —1], offsets=[—1, 0, 1], shape=(Nx + 1,
Nx + 1)

)

D2y = (1 / hy / hy) x sp.diags(
diagonals=[-1, 2, —1], offsets=[-1, 0, 1], shape=(Ny + 1,
Ny + 1)

)

D2x_2d = sp.kron(sp.eye(Ny + 1), D2x)

D2y 2d = sp.kron(D2y, sp.eye(Nx + 1))

A = mask @ (D2x_2d + D2y_2d)

# Boundary conditions

diag = np.zeros ((Nx + 1) x
diagxp = np.zeros ((Nx + 1)
diagxm = np.zeros ((Nx + 1)

diagyp = np.zeros ((Nx + 1) Ny)
diagym = np.zeros ((Nx + 1) Ny)
actGx = np.zeros((Ny + 1, Nx + 1))
actGy = np.zeros ((Ny + 1, Nx + 1))

indx = ind[:, 1 : Nx + 1] — ind[:, 0:Nx]

J, I = np.where((indx = 1) | (indx = —-1))
for k in range(np.shape(I)[0]):
if indx[J[k], I[k]] = 1:
indOut [J[k], I[k]], actGx[J[k], I[k] + 1] =0, 1
else:

indOut [J[k], I[k] + 1], actGx[J[k], I[k]] = 0,
phiS = np.square(phiij[J, I]) + np.square(phiij[J, I 1)
diag[I + (Nx + 1) * J] = phiij[J, T 4+ 1] % phiij[J, T 4+ 1] /
phiS

diagxp[I + (Nx + 1) % J] = —phiij[J, I] x phiij[J, T 4+ 1] /
phiS

diag[I + 1 + (Nx + 1) % J] = phiij[J, I] % phiij[J, I] / phiS

diagxm [I + (Nx + 1) % J] = —phiij[J, I] = phiij[J, T + 1] /
phiS

indy = ind[1 : Ny + 1, :] — ind[0:Ny, :]

J, I = np.where((indy = 1) | (indy —-1))

for k in range(np.shape(I)[0]):
if indy[J[k], I[k]] = 1:

indOut [J[k], I[k]], actGy[J[k] + 1, I[k]] =0, 1
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else:
indOut [J[k] + 1, I[k]], actGy[J[k], I[k]] = 0, 1
phiS = np.square(phi J[ , I]) + np. square (phiij [J + 1, I])
diag[I + (Nx + 1) * J] += phiij[J + 1, I] % phiij[J + 1, I] /
phiS
diagyp[I + (Nx + 1) % J] = —phiij[J, I] * phiij[J + 1, I] /
phiS

diag[I + (Nx + 1) = (J + 1)] += phiij[J, I] = phiij[J, I] /
phiS

diagym|[I + (Nx + 1) = J] = —phiij[J, I] = phiij[J + 1, I] /
phiS

B = (gamma / hx / hy) x sp.diags(
diagonals=(diagym, diagxm, diag, diagxp, diagyp),
offsets=(—-Nx — 1, -1, 0, 1, Nx + 1),

)

# Stabilization

maskGx = sp.diags(diagonals=actGx.ravel())

maskGy = sp.diags(diagonals=actGy.ravel())

C = sigma * hx * hy * (D2x_2d.T @ maskGx @ D2x_2d + D2y _2d.T @
maskGy @ D2y 2d)

# Penalization outside
D = sp.diags(diagonals=indOut.ravel())

# Linear system
A, b= (A+B+ C+D).tocsr(), (ind * (X, Y)).ravel()
u = spsolve(A, b).reshape(Ny + 1, Nx + 1)

# Computation of the errors
uref = ue(X, Y)

e = ind * (u — uref)
elL2 = np.linalg .norm(e) * np.sqrt(hx * hy)
emax = np.linalg .norm(e, np.inf)

print (eL2, emax)
Listing A.1 — Implementation Python de p-FD.






Adaptation du learning rate dans le contexte
d’apprentissage en ligne

Dans cette Annexe, nous présentons un travail réalisé dans le cadre du « Treizieme
atelier de résolution de problémes industriels de Montréal » qui s’est déroulé du 21 au 25
aoflit 2023. 11 a été réalisé en collaboration avec Jean-Bernard Hayet, Amey Kaloti, Samir
Karam, Jean-Pierre Noot, Nassim Razaaly, Sébastien Tran Tien et Killian Verdure sur
un sujet proposé par Brigitte Jaumard et Jean-Michel Sellier.

L’apprentissage automatique en ligne (online learning) désigne un ensemble de
méthodes d’apprentissage supervisé ou les données arrivent en continu et ne peuvent
ainsi pas étre stockées pour réaliser un unique entrainement ultérieur. Contrairement a
lapprentissage automatique traditionnel (hors ligne), ou 1’ensemble de données est fixe,
dans 'apprentissage en ligne les données prennent la forme d’une série temporelle, seules
les derniéres valeurs étant disponibles & un moment donné.

Comme nous 'avons expliqué au Chapitre [4], lors d’un entrainement d’une méthode
de machine learning, il est nécessaire de spécifier un taux d’apprentissage (learning rate)
qui influe sur la convergence de la méthode d’optimisation. Cependant, pour les méthodes
en ligne, ce parametre détermine la réactivité du modele face a de nouvelles données.
Une partie de la difficulté de 'apprentissage en ligne réside ainsi dans le choix de ce
parametre : il doit permettre aux prédictions de prendre en compte les observations
futures tout en restant cohérentes avec les observations passées.

Pour relever ce défi, nous proposons une méthode d’optimisation basée sur la descente
d’hyper-gradient (hypergradient descent).

B.1 Définition du probleme

Dans les problémes de régression traditionnels hors ligne (offline), on dispose d’un
jeu de données d’entrainement :

Do = {xi,yiti<i<m

comportant M observations, qui sert a entrainer (c’est-a-dire optimiser) un modele fp(x)
paramétré par 6.
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Par exemple, dans les cas de prévision que nous verrons plus loin, x € RP représente
un ensemble de p données observées auparavant a un instant ¢ :

(de, div1,diyo, . digp—1),

et y € RS est ensemble des f valeurs futures & prédire :

(ditp, dipts - oo s dpgprf—1)-

Pour déterminer les parametres 6 appropriés, on résout un probleme d’optimisation
de la forme :

0" = arg mein L(9),

ou L est la fonction objectif & minimiser, qui dans ce cas de régression prend généralement
la forme :

LO =~ 3 lyi— folxll%

(x4,y:)€Dg

Pour résoudre ce probleme d’optimisation, la plupart des approches utilisent des
variantes de ’algorithme de descente de gradient (gradient descent, GD). Globalement,
GD suit la direction de la plus forte descente. En partant d’une estimation initiale 6y, on
applique des itérations de mise a jour des parametres selon :

Or = Orp—1 — aVL(Ok—1),

ol « est appelé pas de gradient ou tauz d’apprentissage (learning rate). Dans la littérature,
il est fréquent d’ajuster empiriquement la valeur de ce parametre au cours d’expériences
et de le conserver constant, mais nous verrons dans la section suivante qu’il existe de
nombreuses manieres de le faire évoluer pendant ’entrainement.

En apprentissage en ligne (online learning), on suppose encore qu’au départ, on
dispose d’un jeu de données d’entrainement Dy de M observations, avec lequel on peut
entrainer un modele initial. La différence est que 'on continue a entrainer le modele
avec de nouvelles données D, comprenant N < M observations, arrivant a intervalles
réguliers 7, et que l'on utilise pour mettre a jour les parameétres 6.

Ainsi, on produit régulierement de nouvelles estimations « optimales » des parametres
0 a partir de ces nouvelles données, selon une regle :

9(7’)* _ 9(6(7—1)*7D7).

Notons que cette reégle de mise a jour g peut étre choisie de différentes maniéres, avec
une large gamme de comportements allant d’une dépendance exclusive aux derniéres
données D, (et en oubliant la phase d’entrainement initiale) & une dépendance exclusive
aux données les plus anciennes (et en ignorant les plus récentes). Dans ce projet, nous
supposons que ce compromis est atteint en appliquant un nombre limité K d’itérations
de descente de gradient sur les derniéres données :
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0(()‘1') — 0(7’*1)* (B 1)
o) =07, —avL (g7 (B.2)
0+ =9\, (B.3)

Remarquons que ces étapes peuvent utiliser soit l'algorithme de descente de gra-
dient stochastique (ot I'on utilise une approximation Monte-Carlo du gradient), soit
le vrai gradient (ou 'on utilise toutes les données). Le choix entre les deux n’est pas
particulierement important dans notre contexte.

La fonctionnelle (loss function) utilisée a itération T est donnée par

LO)=— > llyi—foxa)l*

(Xi 7Yi)€DT

La question que nous abordons ici est la suivante : dans le contexte en ligne, comment
déterminer le « meilleur » pas de gradient a utiliser 7 Les principales difficultés rencontrées
sont :

o la possibilité d'un décalage de données (data shift) entre les D,, ce qui peut mener
a un probleme d’optimisation tres différent entre 7 et 7+ 1;

¢ la présence de fortes contraintes de temps a respecter, ce qui peut restreindre le
nombre de méthodes utilisables.

B.2 Revue des méthodes existantes

B.2.1 Meéthodes d’évolution de o dans le cas hors ligne

La stratégie la plus courante concernant le taux d’apprentissage est de le maintenir
constant. Dans de nombreuses applications récentes, une exploration cofiteuse de ’espace
des hyperparametres peut étre effectuée afin de déterminer la meilleure valeur, par
exemple via une recherche en grille (grid search). Cependant, ces méthodes sont beaucoup
trop lentes pour une applicabilité a 'apprentissage en ligne.

Des techniques plus complexes peuvent étre congues pour faire évoluer ce taux
d’apprentissage. Dans le cas des méthodes traditionnelles hors ligne, les principes guidant
ces techniques sont généralement les suivants :

o lorsque 'erreur se dégrade ou a tendance a osciller, il est probablement préférable
de réduire a afin d’effectuer des pas plus petits ;

e lorsque l'erreur diminue de facon constante, mais lente, il est alors préférable
d’augmenter le taux d’apprentissage pour accélérer la convergence ;

e lorsque 'on approche de la fin de 'entrainement et que 6 se rapproche de son
optimum, on réduit généralement le taux d’apprentissage afin d’éviter une trop
grande sensibilité aux variations entre batches.
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FIGURE B.1 — Exemples de learning rate schedulers. Extrait de [70].

Ces principes étant généraux, il est complexe de construire un algorithme systématique
permettant de les appliquer en pratique. Une premiere famille courante de méthodes
consiste a utiliser le nombre d’itérations pour faire varier le taux d’apprentissage, selon

ap = s(k),

ou s est une fonction du nombre actuel d’itérations k. Quelques exemples de telles fonctions
d’évolution (appelées learning rate schedulers) sont donnés a la Fig. En général,
cette fonction est choisie comme étant décroissante (vers une valeur proche de zéro), mais
son choix implique un réglage, par exemple en réalisant plusieurs entrainements, étape
que nous ne pouvons pas nous permettre de réaliser dans le contexte de 'apprentissage
en ligne.

B.2.2 Meéthodes systématiques pour adapter le taux d’apprentissage

Une maniere d’éviter le probleme de la détermination de « consiste a ne pas utiliser
de méthodes du premier ordre (utilisant le gradient) et & se tourner vers des méthodes
du second ordre (utilisant la matrice hessienne). Cependant, nous écartons cette option
ici, car elle pourrait étre trés coliteuse, notamment & cause de 1’évaluation de la matrice
hessienne de la fonction de cotlit par rapport aux parametres du réseau.

Pour les méthodes du premier ordre, la recherche linéaire (line search) fournit un
cadre général pour déterminer le meilleur pas dans l'itération de descente de gradient.
La méthode décrite plus loin dans la Section peut étre considérée comme un
cas particulier de cette famille de méthodes. L’idée générale est que, étant donné un
algorithme de descente de gradient, on optimise le pas o en annulant la dérivée de la
fonction objectif par rapport a «. Il est facile de montrer que cela conduit a choisir des
directions de descente consécutives qui sont orthogonales. Nous verrons que la solution
proposée réalise implicitement la méme chose.

MacLaurin et al. [62] proposent un algorithme trés générique pour estimer les gradients
de la fonction objectif d’un réseau de neurones par rapport a ses hyperparametres.
L’algorithme fournit le gradient exact et pourrait également étre utilisé en considérant le
taux d’apprentissage comme un hyperparametre particulier ; cependant, il nécessite de
multiples appels a 'auto-différentiation du réseau pour produire les dérivées souhaitées.
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Van Erven et Koolen [87] se sont intéressés a la conception de méthodes adaptatives
pouvant automatiquement obtenir des convergences rapides, sans réglage manuel. Les
taux d’apprentissage ne décroissent pas de maniére monotone dans le temps et ne sont pas
ajustés sur la base d’une borne théorique, mais sont pondérés directement en proportion de
leurs performances empiriques sur les données, en utilisant un algorithme de pondération
exponentielle biaisée (tilted exponential weights).

La méthode que nous proposons ici s’inspire de Baydin et al. [7], et optimise également
I’hyperparametre . Cependant, nous verrons qu’elle nécessite un nombre minimal
d’opérations supplémentaires par rapport a la descente de gradient standard. D’une
certaine maniere, elle peut étre considérée comme une méthode apprenant le taux
d’apprentissage, et nous verrons qu’elle peut s’intégrer facilement dans un schéma en
ligne.

B.3 Solution proposée

B.3.1 Meéthode d’optimisation

Nous utilisons une variante de la descente de gradient connue sous le nom de descente
hyper-gradient (hypergradient descent), proposée dans [7]. Comme mentionné ci-dessus,
en apprentissage en ligne, nous gérons deux boucles :

e une boucle externe sur les batches de données des instants 7 ;
e une boucle interne optimisant les parameétres sur le batch spécifique D..

Nous mettons a jour a a chaque itération de la boucle interne. Nous utiliserons donc la
notation a,(;) pour désigner le taux d’apprentissage utilisé pour le batch D, a I'itération
k. La régle de mise & jour pour a{™ est donnée, par analogie avec la descente de gradient
stochastique, par :

LT (0y,_1)
O ’

ou (3 est appelé taux d’apprentissage d’hyper-gradient (hyper-gradient learning rate).
En utilisant la regle de la dérivée en chaine, on obtient :

o =al2,

000 o 00

En utilisant ensuite la régle de mise a jour de I’équation et en prenant la dérivée
par rapport a «, on obtient :

20, 0 [ e (g
Al (07, - VLD (07,)) = ~VLO(O7,). (B.5)

En combinant les équations et nous obtenons finalement la régle de mise a
jour :

o) = a7 + VLD O )TV L (67,). (B.6)

Analysons les termes de cette équation : la mise a jour de 1’équation est calculée

a partir d’'un produit scalaire entre deux gradients. Le premier est le gradient de la
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fonctionnelle de colit par rapport aux parametres du modele que 'on utilise comme
direction de descente pour la mise a jour des parameétres; le second est exactement le
méme gradient évalué a l'itération précédente. Ainsi, aprés une premiere itération ou
l'on utilise éventuellement une valeur initiale o™, on poursuit dans la boucle interne en
optimisant (partiellement) le modele sur D, tout en mettant a jour simultanément «
avec 1’équation Le colit supplémentaire est donc uniquement lié a la conservation
en mémoire du gradient de l'itération précédente, ainsi qu’au calcul du produit scalaire
entre deux gradients consécutifs.

Un autre point important & noter est 'introduction d’un nouvel hyperparametre (3 ;
conservé constant dans [7]. Nous verrons dans les expériences que sa valeur a un impact
important sur la maniere dont évolue a.

Notons également la connexion avec la recherche linéaire : lorsque le parametre a est
proche de son optimum, les incréments deviennent nuls, ce qui se traduit par des produits
scalaires nuls entre deux directions de recherche consécutives, exactement comme le
prédit la recherche linéaire.

Dans le méme article [7], les auteurs étendent ce schéma d’hyper-gradient & d’autres
algorithmes d’optimisation du premier ordre, en particulier ADAM [51], en utilisant la
régle de mise & jour ci-dessus pour son taux d’apprentissage. Ces optimiseurs seront ceux
utilisés dans nos expériences par la suite.

Algorithme 5 : Apprentissage en ligne avec learning rate adaptatif

1 Dy < AcquisitionDesObservationslnitiales()

2 9(()0) “— eimt

3 pour k € [1, K'] faire

a | 6969 —ave®® ) sik> 1 alors

s || ol =a, + VL@ )V @,
6 sinon

|| a®— o,

8 T+ 1

9 tant que True faire
10 D, + AcquisitionDesObservations|()

11 aéT) — a%,_l)

12 | pour k € [1, K] faire

13 0 6 — avL™ @) ) sik > 1 alors
14 Lol = o, + BVLO (00, TILO 67,
15 sinon

16 | af” =af.

17 T+ T7+1
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B.3.2 Schéma d’apprentissage en ligne

Dans l'algorithme nous décrivons le schéma d’apprentissage en ligne proposé,
incluant les mises a jour par hyper-gradient, conformément aux descriptions données
ci-dessus. Il comporte deux phases :

1. une premiere phase hors ligne d’entrainement sur Dy pour initialiser le modele;

2. puis un cycle d’observation optimisé sur les batches successifs D..

La valeur initiale de « a l'instant 7 est prise comme la derniere valeur obtenue a ’instant
T—1

Nous concevons nos expériences pour des problemes de prévision, c’est-a-dire la
prédiction de f valeurs futures dans une série temporelle a partir de ’observation de p
valeurs passées.

B.3.3 Modéles et fonctionnelles de coiit

Nous utilisons un réseau a « Mémoire a Long Court Terme » (Long Short Term
Memory, LSTM) [47], une forme de réseaux de neurones récurrents. Ces réseaux sont
spécialisés dans le traitement de séquences de données. Décrivons plus précisément ce
qu’est un LSTM. Soit h; I'état caché, c; 1’état de cellule, x; ’entrée au temps ¢ et
h;_; 1’état caché de la couche au temps t — 1. De plus, i, f;, g et o; sont des valeurs
intermédiaires appelées respectivement porte d’entrée, porte d’oubli, porte de cellule et
porte de sortie. Enfin, o désigne la fonction d’activation sigmoide.

Une couche LSTM cherche & résumer le contenu d’'une séquence de données observée
jusqu’a I'instant ¢ dans les vecteurs h; et c;, selon les régles de mise a jour suivantes :

it = o(Wiixy + by + Wyihy 1 + by;)

f; = o(Wirxi +bis + Wyrhy 1 +bpy),
gt = tanh(Wgx; + big + Wy hy 1 + by,),
o = 0(Wipx; + bio + Wiohi 1 +bp,) ,
ci=fOc1+itOg,

h; = o; ® tanh(c;),

ou ® désigne le produit élément par élément.

La sortie a un instant ¢ de la séquence est le vecteur caché hy. Une représentation de
cette couche est donnée dans la Fig.

Pour réaliser I’entrainement du LSTM, nous considérons comme fonction de cofit
Perreur quadratique moyenne (Mean Square Error, MSE). Elle est calculée sur 1’ensemble
du jeu de données pour la partie hors ligne (nous n’utilisons pas de descente de gradient
stochastique, mais uniquement le vrai gradient sur I’ensemble complet des données).
Pour 'entrainement en ligne, nous calculons la fonctionnelle de cotit uniquement sur les
données recues en ligne, c’est-a-dire chaque nouveau lot de données.
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FIGURE B.2 — Architecture du LSTM utilisé (issu de [73]).

B.4 Résultats expérimentaux

B.4.1 Mise en place expérimentale

Nous considérons un jeu de données de températures couvrant la période de 2009
a 2016, fourni par le Max Planck Institute. Il est divisé en trois parties correspondant
a des sous-ensembles consécutifs : les données d’entrainement, de validation et de test,
comme illustré dans la Fig.

Temperature °C

—— Training data
—— Validation data
—— Testing data

3 100000 200000 300000 400000
Time (index)

FIGURE B.3 — Séparation du jeu de données.

B.4.2 Evaluation de I'impact de la descente d’hypergradient

Nous comparons 1’évolution des fonctionnelles d’entrainement et de validation en
utilisant 'optimiseur Adam d’une part, et Adam combiné & la descente d’hypergradient,
que nous appelons ADAM-HD, d’autre part. Pour cela, dans la Fig. nous entrainons
un LSTM sur 100 epochs. Les lignes pleines correspondent aux valeurs de loss obtenues
avec I'optimiseur ADAM classique, avec un taux d’apprentissage fixé & a = 10~%. Les
lignes pointillées correspondent aux valeurs de loss obtenues avec ADAM-HD, en partant
de la méme valeur initiale o = 107*. Le taux d’apprentissage I’ADAM-HD converge
vers une valeur d’environ 1072, ce qui entraine une accélération de la convergence de la
fonctionnelle, et donc une convergence plus rapide que celle obtenue avec I’Adam original.

Dans la Figure nous comparons ADAM-HD, partant de o = 10™%, & 'optimiseur
ADAM classique, mais démarrant directement avec la valeur optimale du taux d’apprentis-
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sage donnée par ADAM-HD. Ici, les fonctionnelles d’ADAM convergent plus rapidement
que précédemment. Ainsi, le choix du taux d’apprentissage semble optimal. Il pourrait
alors étre intéressant de commencer un processus d’entrainement avec ADAM-HD jus-
qu’a convergence du taux d’apprentissage, puis de continuer avec un Adam classique en
utilisant la valeur optimale obtenue par ADAM-HD, ce qui est laissé pour des travaux

futurs.

L L L L L L

10° 4 " . E
\\r\\— Loss Validation
\”',‘\ —— Loss Train
\
[T - —_—
N
_ vt by
b e T LA (R L
oo \ -~
TR ERVATAE N
! vipy N s
o [N \
Wwomoong VXX \
1 LINNAY RN \
1072 ST A L
e T D T e LT e
i [ Viay
1] [ VR
oo VX
I
I'Il | |l ‘\ )l
107351} ] VN L
"\ vl AR RN
1 i v T ST N~ —
1! I L2 [
! e
] v AN A
I Vi \
1 roy \
10-44 L LY X 4 L
7 %
] TN
T T T T T T
V] 20 40 60 80 100

FIGURE B.4 — Pointillés : ADAM-HD. Trait plein : ADAM avec o = 10~% initial.
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FIGURE B.5 - Pointillés : ADAM-HD. Trait plein : ADAM avec ae = 102 initial comme
donné par la méthode ADAM-HD 4 la Figure @
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B.5 Conclusion

L’utilisation de la descente de gradient hyper-paramétrique s’est révélée étre une
approche prometteuse, renforcant ’adaptabilité des modeles et soulignant son intérét dans
le contexte dynamique de ’apprentissage en ligne. Nous avons exploré son implémentation
pratique en développant des modéles de type « Réseaux a Mémoire Long Court Terme »
(LSTM), spécialement congus pour la prédiction de séries temporelles. Ces modeles, testés
sur des jeux de données réalistes, nous ont permis de comparer 'optimiseur ADAM
classique avec sa version enrichie par la descente d’hypergradient. Cette analyse a non
seulement renforcé notre compréhension du choix du taux d’apprentissage et de son
impact, mais elle nous a également conduits & proposer une solution efficace aux défis de
I’apprentissage en ligne dans des contextes ou la distribution des données d’entrée évolue
au cours du temps.
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Abstract

p-FEM is a new finite element method, proposed to solve partial differential equations on complex domains,
using simple non-conforming meshes. The method relies on the use of a level-set function ¢, which defines the
domain and its boundary. In this manuscript, we recall the method in the simple case of the resolution of the
Poisson equation with Dirichlet boundary conditions. We further propose a new way to treat this problem with
a penalized version of the method, which provides optimal convergence. Then, we extend our study beyond
this simple case, and we propose a numerically optimal p-FEM scheme to solve the Poisson equation with
mixed Dirichlet/Neumann boundary conditions. We also propose different schemes to treat the Heat equation,
linear elasticity equation and hyperelastic problems. The rest of the manuscript is devoted to the presentation
of different evolutions of o-FEM. We first propose a Finite Difference scheme based on the p-FEM paradigm.
To provide a real-time method, we then explore the combination of o-FEM with Neural Operators, where we
propose o-FEM-FNO, which is capable of predicting precise results much faster than FEM based methods.
Finally, in the idea of providing opening evolutions, we propose two combinations with the multigrid approach :
one based only on ¢-FEM, the second on ¢o-FEM-FNO. The proposed results open many interesting perspectives
and challenges for p-FEM.

Résumé

p-FEM est une nouvelle méthode éléments finis, proposée pour résoudre des équations aux dérivées partielles
sur des domaines complexes, en utilisant des maillages simples non-conformes. La méthode repose sur 1'utilisation
d’une fonction level-set ¢, décrivant le domaine et sa frontiére. Dans ce manuscrit, nous rappelons d’abord la
méthode appliquée a la résolution du probleme de Poisson avec conditions de Dirichlet. Nous proposons ensuite
une nouvelle fagon de traiter ce probléme avec une version pénalisée de la méthode, offrant une convergence
optimale. Par la suite, nous étendons notre étude a des problémes complexes et nous proposons en particulier
un schéma @-FEM numériquement optimal pour résoudre le probleme de Poisson avec conditions mixtes
Dirichlet/Neumann. Nous proposons également différents schémas o-FEM permettant de résoudre 1'équation de
la chaleur ou des problemes d’élasticité linéaire et non linéaire. La suite du manuscrit est dédiée a la présentation
de plusieurs évolutions de o-FEM. Dans un premier temps, nous proposons un schéma aux différences finies basé
sur I’approche p-FEM. Pour obtenir une méthode temps réel, nous explorons ensuite la combinaison de ¢-FEM
avec les opérateurs neuraux, ou nous proposons ¢-FEM-FNO, capable de prédire des résultats précis beaucoup
plus rapidement que les méthodes éléments finis. Finalement, dans I’idée de proposer diverses pistes d’évolutions,
nous proposons deux combinaisons avec I’approche multigrid : I'une basée uniquement sur o-FEM, 'autre sur
o-FEM-FNO. Les résultats proposés ouvrent alors de nombreux challenges et perspectives pour p-FEM.
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