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Table de notations

Nous introduisons dans la Table suivante un ensemble (non exhaustif) de notations
qui seront utilisées à de multiples reprises dans ce manuscrit.

Notation Signification

M
ét
ho

de
s
él
ém

en
ts

fin
is Ω Domaine considéré

Γ = ∂Ω Frontière du domaine Ω
n Vecteur normal unitaire extérieur au domaine Ω
ϕ Fonction level-set définissant Ω et Γ
O Boîte [0, 1]2
Th Maillage de calcul ϕ-FEM
h Taille caractéristique des cellules d’un maillage
T Γ
h Cellules de Th coupant la frontière Γ
FΓ
h Facettes internes de T Γ

h

σD, σN , γ· Paramètres de stabilisation et de pénalisation

Él
as
tic

ité σ Tenseur des contraintes (linéaire)
ε Tenseur de déformation
P Premier tenseur de Piola-Kirchhoff
µ, λ Constantes de Lamé

FN
O

G† Opérateur ground truth
θ Ensemble de paramètres à optimiser
Gθ Opérateur paramétrisé par θ

F , F−1 Transformation de Fourier discrète et son inverse
σ Fonction d’activation non linéaire
L Fonctionnelle à minimiser (loss function)
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Plan du manuscrit
Le premier chapitre de ce manuscrit est consacré à une introduction générale. Nous y

exposerons le contexte scientifique de cette thèse, accompagné d’une revue de méthodes
existantes dans la littérature. Cela permettra de justifier le choix de la méthode ϕ-
FEM comme méthode principale de ce travail. En fin de chapitre, nous présenterons en
détail cette méthode appliquée à la résolution du problème de Poisson : d’abord avec
conditions de Dirichlet, telle qu’introduite dans [28], puis avec conditions de Neumann,
selon l’approche développée dans [23].

Le second chapitre propose une extension de la méthode ϕ-FEM à diverses équations
aux dérivées partielles. Nous débuterons par une nouvelle formulation pour le problème
de Poisson avec conditions de Dirichlet, avant d’introduire deux versions de ϕ-FEM
capables de traiter efficacement des conditions mixtes Dirichlet-Neumann, y compris dans
des contextes présentant des singularités. Nous poursuivrons par une étude théorique et
numérique d’un schéma adapté à l’équation de la chaleur avec conditions de Dirichlet,
développée dans le cadre de l’article « ϕ-FEM for the heat equation : optimal convergence
on unfitted meshes in space », en collaboration avec Michel Duprez, Vanessa Lleras et
Alexei Lozinski (cf. [27]). La suite du chapitre sera dédiée aux problèmes d’élasticité
linéaire, notamment les cas d’interfaces et de fractures. Les trois premières parties de cette
section s’appuient sur les travaux présentés dans l’article «ϕ-FEM : an efficient simulation
tool using simple meshes for problems in structure mechanics and heat transfer », réalisé
en collaboration avec Stéphane Cotin, Michel Duprez, Vanessa Lleras et Alexei Lozinski
(cf. [22]). Enfin, nous introduirons de nouveaux cas tests pour les conditions mixtes
Dirichlet-Neumann, puis nous adapterons le schéma ϕ-FEM traitant le cas de conditions
mixtes à des problèmes d’élasticité non-linéaire.

Le troisième chapitre de ce manuscrit sera consacré à une adaptation de l’idée utilisée
pour ϕ-FEM au cas des différences finies. Ce chapitre sera issu de l’article « ϕ-FD :
A well-conditioned finite difference method inspired by ϕ-FEM for general geometries
on elliptic PDEs » publié en collaboration avec Michel Duprez, Vanessa Lleras, Alexei
Lozinski et Vincent Vigon (cf. [25]). On proposera alors un nouveau schéma différences
finies pour lequel une étude théorique sera proposée. Cette méthode sera ensuite comparée
numériquement à la littérature différences finies ainsi qu’aux approches éléments finis.

Dans un quatrième chapitre, nous nous intéresserons à des combinaisons entre mé-
thodes éléments finis et réseaux de neurones. Nous considérerons alors différentes équations
et proposerons une nouvelle approche combinant les avantages de la méthode ϕ-FEM ainsi
que la rapidité d’évaluation des réseaux de neurones. Ce chapitre sera majoritairement
issu de l’article « ϕ-FEM-FNO : a new approach to train a Neural Operator as a fast
PDE solver for variable geometries » (cf. [26]).

Dans le dernier chapitre, nous présenterons différents outils utilisés au cours de
cette thèse, permettant d’utiliser des fonctions level-set pour construire des maillages
« conformes » ainsi qu’une première méthode permettant de reconstruire des approxi-
mations de fonctions level-set à partir d’images binaires. Nous présenterons ensuite une
nouvelle méthode type multigrid combinée à l’approche ϕ-FEM. Enfin, dans une dernière
section, nous proposerons une nouvelle approche hybride réseaux de neurone et éléments
finis en combinant la rapidité de ϕ-FEM-FNO et la précision de ϕ-FEM-Multigrid.
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1 Introduction

Chapitre 1 – Introduction
1.1 Contexte et outils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Méthode éléments finis standard . . . . . . . . . . . . . . . . 6
1.1.2 Méthodes non conformes . . . . . . . . . . . . . . . . . . . . . 7

1.2 La méthode ϕ-FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Conditions de Dirichlet . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Conditions de Neumann . . . . . . . . . . . . . . . . . . . . . 12

1.1 Contexte et outils

Les équations aux dérivées partielles (EDP) jouent un rôle fondamental dans la
modélisation d’une grande variété de phénomènes physiques, biologiques et mécaniques,
en particulier dans le domaine de la biomécanique. Elles permettent de décrire des
systèmes complexes pour lesquels les solutions analytiques sont généralement inaccessibles,
notamment en présence de géométries irrégulières ou de conditions aux limites non triviales.
La résolution numérique de ces équations revêt donc une importance majeure, avec un
besoin croissant d’algorithmes rapides, voire capables de fonctionner en temps réel.

Parmi les approches les plus utilisées pour la résolution d’EDP, la méthode des
éléments finis (MEF, ou FEM pour Finite Element Method) (voir par exemple [36, 32, 10]
pour une présentation détaillée) occupe une place centrale. Néanmoins, cette méthode
rencontre des limitations importantes lorsqu’il s’agit de traiter des géométries complexes,
comme celles des organes, car elle repose sur la construction de maillages conformes.
Cette étape de maillage, souvent délicate, constitue une difficulté majeure à l’application,
notamment en temps réel, de cette méthode.

Pour contourner cette difficulté, des approches dites non conformes ont été dévelop-
pées. Ces méthodes, souvent regroupées sous les appellations de méthodes aux frontières
immergées (Immersed Boundary Methods, IBM) [67] ou de domaines fictifs [39], per-
mettent de s’affranchir de la nécessité de construire un maillage épousant précisément la
frontière. Au fil des années, ces approches ont connu de nombreuses améliorations. Si
les premières versions souffraient souvent d’un manque de précision, les développements
plus récents ont permis d’atteindre des niveaux de performance bien supérieurs, parfois
au prix d’une complexité d’implémentation accrue.
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6 CHAPITRE 1. INTRODUCTION

Dans ce contexte, il est pertinent de présenter certaines de ces méthodes non conformes.
Cette analyse mènera alors naturellement à la présentation de la méthode qui sera au
centre de ce manuscrit : la méthode ϕ-FEM.

Pour cela, nous considérons le problème de Poisson avec conditions de Dirichlet
homogènes au bord, donné par {

−∆u = f , dans Ω ,

u = 0 , sur Γ ,
(1.1)

avec Ω ⊂ Rd (ici d = 2, 3) un domaine de frontière Γ, f ∈ L2(Ω) et la normale unitaire
extérieure à Ω, n.

1.1.1 Méthode éléments finis standard

Une méthode classique pour résoudre (1.1) est la méthode des éléments finis (que
l’on appellera par la suite « Standard-FEM ») utilisant des maillages conformes. Soit
v ∈ H1

0 (Ω) une fonction test avec

H1
0 (Ω) = {u ∈ H1(Ω) |u = 0 sur Γ} ,

la formulation faible de l’équation (1.1) est obtenue par multiplication par v et intégration
par partie, ce qui donne le problème : trouver u ∈ H1

0 (Ω) vérifiant∫
Ω
∇u · ∇v −

∫
∂Ω

∂u

∂n
v︸ ︷︷ ︸

=0

=
∫

Ω
fv , ∀ v ∈ H1

0 (Ω) .

Cela nous donne alors une formulation continue, que l’on discrétise afin de résoudre le
problème numériquement. On considère un domaine polygonal Ω ⊂ Rd dont la frontière
Γ peut être exactement représentée par un maillage conforme Th, de taille h et constitué
d’éléments finis simples (par exemple des triangles, tétraèdres), tel que :

Ω =
⋃

K∈Th

K.

On représente par exemple un tel maillage pour le cas d’un domaine circulaire à la Figure
1.1.

Remarque 1.1. Par la suite, on dira qu’un maillage Th est de taille h lorsque diam(T ) 6 h
pour tout T ∈ Th. En pratique, on essaiera de construire des maillages aussi réguliers
que possible, c’est-à-dire des maillages où la variation de diam(T ) entre les cellules est
minimale. On considèrera des maillages géométriquement qualitatifs au sens de Ciarlet
[19].

Soit maintenant l’espace éléments finis de Lagrange de degré k ∈ N∗, sur le maillage
Th défini par

Vh = {vh ∈ C0(Ω) |vh|T ∈ Pk(T ) ,∀ T ∈ Th} , (1.2)
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Figure 1.1 – Maillage conforme pour une méthode éléments finis standard.

où Pk(T ) est l’espace des polynômes de degré inférieur ou égal à k. On notera V 0
h l’espace

homogène associé, incluant la contrainte uh = 0 sur le bord de Ω. Finalement, on peut
introduire la version discrétisée de la formulation faible : trouver uh ∈ Vh, telle que∫

Ω
∇uh · ∇vh =

∫
Ω
fhvh , ∀ vh ∈ V 0

h . (1.3)

La discrétisation du problème conduit à un système linéaire, qui peut être résolu
efficacement par des méthodes numériques standards.

1.1.2 Méthodes non conformes

Intéressons-nous maintenant aux techniques basées sur les éléments finis non conformes.
Les approches initiales telles que [67, 39, 38] manquent de précision en raison de leur
traitement simplifié des conditions aux limites et produisent également des matrices mal
conditionnées. Au cours des deux dernières décennies, des méthodes plus précises ont été
développées, notamment la méthode des éléments finis étendus XFEM [69, 46] initialement
introduite pour des problèmes d’interfaces ou de fractures, ou encore les méthodes
CutFEM [15, 16, 13] et « Shifted Boundary Method » (SBM) [63]. Ces méthodes présentent
généralement une convergence optimale et les matrices associées sont bien conditionnées,
mais elles nécessitent des règles de quadrature non standard ou des extrapolations pour
assembler les matrices, pouvant rendre les implémentations numériques complexes. Plus
récemment, pour éviter ces contraintes, les auteurs de [28] ont développé une méthode
non conforme appelée ϕ-FEM, qui utilise une fonction level-set pour décrire le domaine.

Afin de comprendre l’intérêt de l’approche ϕ-FEM par rapport à d’autres méthodes
non conformes, il est intéressant de présenter brièvement certaines de ces méthodes.

L’une des premières méthodes, notamment introduite par [67, 39, 38], dont l’idée
est d’étendre la solution u du problème considéré à un maillage cartésien contenant le
domaine Ω, a notamment l’inconvénient d’être relativement lourde numériquement.
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Figure 1.2 – Exemple de grille cartésienne Th contenant une géométrie complexe.

Cela est dû à la résolution qui s’effectue sur l’ensemble de la grille cartésienne puisque le
schéma éléments finis correspondant est donné par : trouver uh ∈ Vh et λh ∈Mh tels que

a(uh, vh) + b(vh, λh) = l(vh) , ∀ vh ∈ Vh ,
b(uh, µh) = 0 , ∀ µh ∈Mh ,

avec
a(u, v) =

∫
ΩO
h

∇u · ∇v , b(v, λ) = 〈v, λ〉 , et l(v) =
∫

ΩO
h

fv ,

où ΩOh est le domaine couvrant un maillage cartésien Th, comme représenté à la Figure
1.2, Vh défini par (1.2) et Mh = {µh : µh|S ∈ P0(S) , ∀S ∈ SΓ} avec SΓ une subdivision
de la frontière Γ.

Une autre méthode plus complexe mais, offrant de très bons résultats (tant théoriques
que numériques) a été introduite plus récemment. Cette méthode, nommée CutFEM
[13, 14, 44, 16] utilise également l’idée d’immerger le domaine considéré dans un maillage
cartésien. Cependant, on ne considère ici qu’une partie des cellules de la grille, celles
en intersection avec le domaine physique Ω afin de construire le maillage Th, comme
représenté à la Figure 1.3. On obtient alors des cellules coupées par la frontière, i.e.
des cellules contenant une partie à l’intérieur du domaine et une partie à l’extérieur du
domaine. Pour prendre en compte ces cellules dans le schéma éléments finis, des termes
de stabilisation ont été introduits.

Le schéma est une nouvelle fois construit à partir d’une intégration par parties de
(1.1), que l’on peut, puisque u = 0 sur ∂Ω, combiner avec les expressions suivantes :∫

∂Ω
u∂nv = 0 ,

∫
∂Ω
uv = 0

et
G(u, v) =

∑
E∈FΓ

h

∫
E

[∂nu] [∂nv] ,
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Figure 1.3 – Exemple de maillage considéré pour l’approche CutFEM. Gauche : grille et
cellules sélectionnées. Droite : domaine coupé considéré lors de l’intégration par parties
(gris), où les points noirs sont les points de quadrature utilisés sur les cellules coupées.

où FΓ
h est l’ensemble des faces internes du maillage Th, appartenant à des cellules coupées

par Γ. Le schéma CutFEM pour résoudre (1.1) est finalement donné par : trouver uh ∈ Vh
tel que

∫
Ω
∇uh · ∇vh −

∫
∂Ω
∂nuhvh −

∫
∂Ω
uh∂nvh + γ

h

∫
∂Ω
uhvh +G(uh, vh) =

∫
Ω
fvh , ∀vh ∈ Vh .

On remarque alors en particulier dans cette formulation que, contrairement à la
méthode précédente, l’intégration par parties est réalisée sur le domaine physique. Ainsi,
cela génère une complexité d’implémentation plus élevée. On trouve notamment un
package spécialement développé pour cela, le package CutFEMx 1, dépendant de DolfinX,
qui permet d’implémenter la méthode.

1.2 La méthode ϕ-FEM

Une autre méthode, introduite plus récemment dans [28] sous le nom de ϕ-FEM,
propose de résoudre (1.1) en imposant les conditions de bord à l’aide d’une fonction
level-set caractérisant la géométrie et sa frontière. Cette approche a par la suite été
étendue aux conditions de bord de Neumann dans [23]. Plusieurs autres variantes de la
méthode ont ensuite été proposées par exemple pour résoudre le problème de Stokes dans
[24] ou des problèmes d’élasticité linéaire dans [22]. Nous allons ici rappeler la méthode
ϕ-FEM pour résoudre le problème de Poisson, dans un premier temps avec conditions de
Dirichlet, puis conditions de Neumann au bord. Nous ne présenterons pas les aspects
théoriques qui ont été proposés dans [28, 23], mais seulement les méthodes, afin d’assurer
une bonne compréhension de la suite du manuscrit.

1. https://github.com/sclaus2/CutFEMx

https://github.com/sclaus2/CutFEMx
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1.2.1 Conditions de Dirichlet

On considère un domaine Ω ⊂ O = [0, 1]2 ⊂ R2, défini par une fonction level-set ϕ
telle que

Ω := {ϕ < 0} et Γ := {ϕ = 0} , (1.4)

avec Γ la frontière de Ω. L’idée principale de la méthode ϕ-FEM repose sur cette
représentation du domaine permettant de considérer

u = ϕw , (1.5)

et ainsi de chercher une solution w telle que ϕw vérifie l’équation (1.1). Par construction,
ϕw = 0 sur Γ et donc u satisfait automatiquement les conditions de Dirichlet.

Soit T Oh un maillage triangulaire cartésien de O, dont la taille de cellule est h. Soit
également ϕh = I

(l)
h,Oϕ l’interpolation continue de Lagrange de ϕ (de degré l > 0) sur T Oh ,

avec I(l)
h,O l’opérateur d’interpolation de Lagrange sur l’espace éléments finis de degré l

sur T Oh .
On construit alors à l’aide de ϕh un sous-maillage Th de T Oh contenant toutes les

cellules intersectant le domaine {ϕh < 0}, i.e.

Th :=
{
T ∈ T Oh : T ∩ {ϕh < 0} 6= ∅

}
. (1.6)

Introduisons également un second sous-maillage, cette fois de Th, contenant les cellules
coupées par la frontière, i.e. {ϕh = 0}, donné par

T Γ
h := {T ∈ Th T ∩ {ϕh = 0} 6= ∅} . (1.7)

Th \ T Γ
h T Γ

h Γ Th \ T Γ
h

FΓ
h

T Γ
h

Γ

Figure 1.4 – Gauche : représentation des ensembles Th et T Γ
h . Droite : représentation de

FΓ
h sur le même exemple.
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On notera par la suite Ωh et ΩΓ
h les domaines occupés par les maillages Th et T Γ

h

respectivement ainsi que ∂Ωh la frontière de Ωh (qui est différente de ∂Ω = Γ et de
Γh = {ϕh = 0}). Un exemple de représentation des maillages Th et T Γ

h est donné à la
Figure 1.4 (gauche).

Il est également nécessaire de construire un ensemble FΓ
h , contenant les facettes

internes du maillage T Γ
h , défini par

FΓ
h := {F ∈ T Γ

h \ ∂Ωh} . (1.8)

Sur la Figure. 1.4 (droite), ces facettes sont représentées en violet (trait plein) et les
facettes de ∂Ωh en traits discontinus.

Soit k > 1, un entier. L’espace éléments finis de degré k sur Th est défini par

V
(k)
h := {vh ∈ H1(Ωh) vh|T ∈ Pk(T ) ∀ T ∈ Th} . (1.9)

Le schéma ϕ-FEM pour résoudre (1.1) est finalement donné par : trouver wh ∈ V (k)
h

telle que, pour tout sh ∈ V (k)
h avec uh = ϕhwh et vh = ϕhsh,∫

Ωh
∇uh · ∇vh −

∫
∂Ωh

∂uh
∂n

vh +Gh(uh, vh) =
∫

Ωh
fhvh +Grhsh (vh) , (1.10)

où fh est l’interpolation de Lagrange de f sur V (k)
h ,

Gh(u, v) = σDh
∑
E∈FΓ

h

∫
E

[
∂u

∂n

] [
∂u

∂n

]
+ σDh

2 ∑
T∈T Γ

h

∫
T

∆u∆v , (1.11)

et
Grhsh (v) = −σDh2 ∑

T∈T Γ
h

∫
T
fh∆v . (1.12)

Les crochets [·] dans l’expression de Gh correspondent aux sauts sur les facettes de FΓ
h ,

i.e. [
∂u

∂n

]
= (∇u+ −∇u−) · n ,

où ∂u
∂n = ∇u · n est la dérivée normale de u et σD > 0 est un paramètre de stabilisation

indépendant de h. Le premier terme de (1.11) a été introduit dans [12], sous le nom de
« Ghost penalty » et a été notamment utilisé dans l’approche CutFEM [13].
Remarque 1.2 (Conditions non homogènes). Dans le cas de conditions de bord non
homogènes (u = uD sur Γ avec uD non nulle), uh deviendra uh = ϕhwh + uD.
Remarque 1.3. Par la suite, nous ferons régulièrement référence à ce schéma sous le nom
de schéma direct, par opposition à sa variante duale qui sera présentée en Section 2.1.

Dans [28], le théorème de convergence suivant a été prouvé :

Théorème 1.1 (c.f. [28, Théorème 2.1]). Sous les hypothèses [28, Hypothèse 1] et [28,
Hypothèse 2], pour l > k, un maillage T Γ

h quasi-uniforme, une fonction f ∈ Hk(Ωh ∪ Ω).
Soient u ∈ Hk+2(Ω) solution exacte du problème (1.1) et wh solution approchée du
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problème (1.10). Soit uh = ϕhwh (la solution approchée de (1.1)). Alors, il existe une
constante positive C telle que :

|u− uh|1,Ωh∩Ω 6 Chk‖f‖k,Ω∪Ωh ,

et si Ω ⊂ Ωh, alors :
‖u− uh‖0,Ω 6 Chk+ 1

2 ‖f‖k,Ωh ,

où ‖ · ‖0,O désigne la norme L2 sur O, | · |1,O la semi-norme H1 et ‖ · ‖k,O la norme k.

Ainsi, la méthode ϕ-FEM offre une convergence sous-optimale pour la norme L2

et optimale pour la norme H1 (i.e. l’erreur converge selon le même ordre que l’erreur
d’interpolation), sous certaines hypothèses sur la régularité de la frontière Γ et des
maillages Th et T Γ

h . De plus, les résultats numériques ont montré un ordre de convergence
optimal également pour l’erreur en norme L2. Enfin, le bon conditionnement de la matrice
éléments finis associée au schéma a été démontré et illustré numériquement.

1.2.2 Conditions de Neumann

Par la suite, nous aurons également besoin de traiter des conditions de Neumann.
Dans [23], un schéma ϕ-FEM permettant de résoudre l’équation{

−∆u+ u = f , dans Ω ,

∇u · n = 0 , sur ΓN = Γ ,
(1.13)

a été introduit. Pour traiter ce cas, il est nécessaire d’introduire différentes variables
auxiliaires permettant d’utiliser la fonction level-set cette fois en la reliant à ∇u. On
considère une fois de plus les domaines Ωh et ΩΓ

h ainsi que les maillages correspondant
Th et T Γ

h . Soit également FNsh = ∂(Th \ T Γ
h ), l’ensemble des faces entre Th \ T Γ

h et T Γ
h .

Les différents maillages et ensembles de faces sont représentés à la Figure 1.5.
Soient les espaces éléments finis

Z
(k)
h (O) :=

{
zh : O → Rd : zh|T ∈ Pk(T )d ∀T ∈ T Oh , zh continue sur O

}
(1.14)

et

Q
(l)
h (O) :=

{
qh : O → R : qh|T ∈ Pl(T ) ∀T ∈ T Oh , qh continue sur O si l ≥ 0

}
, (1.15)

avec O ⊂ Ωh et T Oh le maillage couvrant le domaine O. Les conditions de bord seront
alors imposées via les variables y et p introduites de sorte que

y = −∇u, sur ΩΓ
h , (1.16)

div y + u = f , sur ΩΓ
h , (1.17)

y · ∇ϕ+ pϕ = 0, sur ΩΓ
h , (1.18)

où l’on a utilisé le fait que n = ∇ϕ/|∇ϕ| sur Γ pour établir (1.18).
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Th \ T Γ
h T Γ

h Γ Th \ T Γ
h

FN
h

T Γ
h

FNS

h

Γ

Figure 1.5 – Exemple de représentation des ensembles Th, T Γ
h , FΓ

h et FΓs
h .

Le problème est finalement de trouver (uh, yh, ph) ∈ V (k)
h × Z(k)

h (ΩΓ
h) × Q(k−1)

h (ΩΓ
h)

tel que∫
Ωh
∇uh · ∇vh +

∫
∂Ωh

yh · n vh +
∫

Ωh
uh vh

+ γdiv

∫
ΩΓ
h

(div yh + uh) · (div zh + vh) + γu

∫
ΩΓ
h

(yh +∇uh) · (zh +∇vh)

+ γp
h2

∫
ΩΓ
h

(
yh · ∇ϕh + 1

h
phϕh

)
·
(
zh · ∇ϕh + 1

h
qhϕh

)
+ σNh

∑
E∈FNs

h

∫
E

[
∂uh
∂n

] [
∂vh
∂n

]

=
∫

Ωh
fhvh + γdiv

∫
ΩΓ
h

fh · (div zh + vh) ,

∀(vh, zh, qh) ∈ V (k)
h × Z(k)

h (ΩΓ
h)×Q(k−1)

h (ΩΓ
h) . (1.19)

Le schéma (1.19) est obtenu après intégration par parties et ajout des équations
(1.16)-(1.18) sous la forme des moindres carrés. On retrouve également la Ghost penalty
appliquée sur les faces de FNSh . Enfin, les termes multipliés par γdiv sont les termes de
stabilisation d’ordre 2.
Remarque 1.4 (Conditions de Neumann non homogènes). Dans le cas de conditions de
Neumann non homogènes, ∂u∂n = g sur Γ, l’équation (1.18) sera modifiée par

y · ∇ϕ+ pϕ = g̃|∇ϕ| ,

avec g̃ un prolongement de g de Γ au voisinage de Γ, et le schéma sera adapté en
conséquence.
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Remarque 1.5 (Aspects software et hardware). Dans la suite de ce manuscrit, sauf mention
explicite du contraire, toutes les simulations ont été exécutées avec un processeur Intel
Core i7-12700H, avec 32Gb de mémoire RAM ainsi qu’un GPU NVIDIA RTX A2000
avec 8Gb de mémoire. De plus, toutes les simulations éléments finis ont été réalisées avec
des implémentations Python à l’aide de la librairie FEniCS [2] (version 2019.1.0) et de
son évolution, la librairie FEniCSx [5, 3, 80, 79] (version 0.8.0).



2 Les nouveaux schémas ϕ-FEM

Résumé

Ce chapitre est consacré à la résolution de plusieurs EDP avec
la méthode ϕ-FEM. Dans un premier temps, nous introduirons un
nouveau schéma ϕ-FEM traitant l’équation de Poisson avec conditions
de Dirichlet. Nous présenterons ensuite une combinaison de ce schéma
avec deux variantes d’imposition de conditions de Neumann afin de
traiter des problèmes de conditions mixtes. Nous proposerons ensuite
une méthode ϕ-FEM permettant de résoudre l’équation de la chaleur
avec conditions de Dirichlet homogènes au bord, introduite dans [22, 27].
Enfin, nous proposerons plusieurs schémas permettant de résoudre divers
problèmes d’élasticité linéaire (présentés dans [22]) et non-linéaire.
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2.1 Le schéma ϕ-FEM « dual »
Intéressons-nous à présent à un second schéma ϕ-FEM permettant de résoudre

l’équation de Poisson avec conditions de Dirichlet homogènes (1.1). Contrairement au
premier schéma présenté en (1.10), celui-ci s’inspire du schéma Neumann (1.19), en
introduisant une variable auxiliaire localisée sur la bande ΩΓ

h.
On considère donc l’équation (1.1) définie sur un domaine Ω inclus dans une boîte

O, sur laquelle est construit un maillage cartésien T Oh . Le domaine Ω et sa frontière Γ
sont décrits à l’aide d’une fonction level-set ϕ (voir (1.4)), permettant de construire les
maillages Th et T Γ

h (cf. (1.6) et (1.7)), ainsi que les sous-domaines associés Ωh et ΩΓ
h.

Dans ce nouveau schéma, les conditions de Dirichlet sont imposées par pénalisation à
l’aide d’une variable auxiliaire p définie sur ΩΓ

h, via l’équation

u = ϕp , sur ΩΓ
h . (2.1)

Ainsi, soit k > 0. La variable principale du problème, u sera discrétisée par uh ∈ V (k)
h

(cf. (1.9)) et la variable auxiliaire p par ph ∈ Q(k)
h (ΩΓ

h) (cf. (1.15)). Le schéma ϕ-FEM
dual pour (1.1) est alors donné par : trouver uh ∈ V (k)

h et ph ∈ Q(k)
h (ΩΓ

h) tels que

∫
Ωh
∇uh · ∇vh −

∫
∂Ωh

∂uh
∂n

vh + γ

h2

∫
ΩΓ
h

(uh −
1
h
ϕhph)(vh −

1
h
ϕhqh)

+Glhsh (uh, vh) =
∫

Ωh
fvh +Grhsh (vh) , ∀vh ∈ V

(k)
h , qh ∈ Q

(k)
h (ΩΓD

h ) , (2.2)

où Glhsh et Grhsh sont les termes de stabilisation introduits dans (1.11) et (1.12) respecti-
vement.
Remarque 2.1 (Conditions de Dirichlet non homogènes). On reconnait la formulation
de départ utilisée pour construire le schéma direct (1.10) (u = ϕw sur Ω), imposée
localement via l’équation (2.1). Ainsi, pour le cas de conditions non homogènes, i.e.
u = uD sur Γ, il suffit d’appliquer le même principe et d’imposer u = ϕp+ uD dans le
schéma ce qui modifie uniquement l’intégrale sur ΩΓ

h, qui devient

γ

h2

∫
ΩΓ
h

(uh −
1
h
ϕhph − uD)(vh −

1
h
ϕhqh) .

Remarque 2.2 (Schéma direct et schéma dual). Les relations (1.5) et (2.1) semblent
analogues, mais leur rôle diffère sensiblement. Dans le schéma direct, la variable w
remplace entièrement u, tandis que dans la version duale, la variable auxiliaire p vient en
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complément de u, ce qui augmente légèrement le coût du calcul. Ce coût supplémentaire
reste limité puisque p est restreinte à la bande ΩΓ

h, de taille h.
Cependant, la version duale présente deux avantages notables. D’une part, elle utilise

dans la formulation la fonction ϕ localement autour de la frontière, et non sur l’ensemble
du domaine. D’autre part, elle est naturellement compatible avec le schéma Neumann,
ce qui en fait un outil particulièrement adapté pour le traitement de conditions mixtes
Dirichlet/Neumann, que nous aborderons par la suite. À l’inverse, la version directe du
schéma, a l’avantage d’offrir une sorte de correction de la solution lors de la multiplication
de w par ϕ, ce qui offre généralement de meilleurs résultats numériquement.

2.1.1 Analyse théorique : résultats principaux et lemmes importants

Dans un premier temps, rappelons les hypothèses sur le domaine et le maillage, issues
de [28], nécessaires à l’étude de convergence du schéma (2.2).

Hypothèse 2.1.1. La frontière Γ peut être recouverte par des ouverts Oi, i = 1, . . . , I
sur lesquels on peut introduire des coordonnées locales ξ1, . . . , ξd avec ξd = ϕ telles que,
jusqu’à l’ordre k + 1, toutes les dérivées partielles ∂αξi/∂xα et ∂xα/∂αξi sont bornées
par une constante C0 > 0. Ainsi, sur O, ϕ est de classe Ck+1 et il existe m > 0 tel que
|ϕ| > m sur O \ ∪i=1,...,IOi.

Hypothèse 2.1.2. La frontière approchée, définie par Γh = {ϕh = 0} peut être recou-
verte par des patchs d’éléments {Πr}r=1,...,NΠ tels que :

— Chaque patch Πr peut s’écrire Πr = ΠΓ
r ∪ Tr où ΠΓ

r ⊂ T Γ
h et Tr ∈ Th \ T Γ

h . De plus
Πr, comporte au plus M éléments qui sont connectés avec M indépendant de h ;

— Le maillage T Γ
h vérifie T Γ

h = ∪r=1,...,NΠΠΓ
r ;

— Deux patchs Πr et Πs sont disjoints si r 6= s.

Ces hypothèses sont satisfaites lorsque la frontière Γ est suffisamment régulière, et le
maillage Th suffisamment fin.

Nous allons maintenant énoncer le théorème de convergence du schéma (2.2)

Théorème 2.1. On suppose que les hypothèses 2.1.1 et 2.1.2 sont satisfaites, k > 0 et
f ∈ Hk−1(Ωh). Enfin, on suppose Ω ⊂ Ωh. Soit u ∈ Hk+1(Ω) la solution de (1.1). La
solution de (2.2) uh ∈ V (k)

h satisfait

|u− uh|1,Ω 6 Chk‖f‖k−1,Ωh et ‖u− uh‖0,Ω 6 Chk+1/2‖f‖k−1,Ωh ,

où C > 0 est une constante.

Dans un premier temps, nous rappelons plusieurs lemmes de [28] et [23], qui seront
nécessaires dans les preuves suivantes.

Lemme 2.1 (cf. [28, Lemme 3.3]). Sous l’hypothèse [28, Assumption 2], pour tout β > 0
et s ∈ N∗, il est possible de choisir a ∈]0, 1[ dépendant uniquement de la régularité du
maillage et de s, tel que pour tout vh ∈ V

(s)
h

|vh|21,ΩΓ
h
6 α|vh|21,Ωh + βh

∑
F∈FΓ

h

∥∥∥∥[∂vh∂n
]∥∥∥∥2

0,F
+ βh2‖∆vh‖20,ΩΓ

h
.
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Lemme 2.2 (cf. [23, Lemme 3.4]). Sous l’hypothèse 2.1.1, toute fonction v ∈ Hs(Ωh)
s’annulant sur Ω, avec 1 6 s 6 k + 1, vérifie

‖v‖0,Ωh\Ω 6 Chs‖v‖s,Ωh\Ω.

Nous rappelons également un Lemme démontré dans [31, Lemme 4.10] :

Lemme 2.3. Pour toute fonction u ∈ H1(Ωh),

‖u‖0,ΩΓ
h
6 C
√
h‖u‖1,Ωh .

Enfin, nous introduisons un nouveau résultat :

Lemme 2.4. Pour tous u ∈ V (k)
h et p ∈ Q(k)

h (ΩΓ
h), il existe C > 0 tel que

‖ϕhp‖0,ΩΓ
h
6 C(h‖∇u‖0,ΩΓ

h
+ ‖u− ϕhp‖0,ΩΓ

h
) .

Preuve. En utilisant l’inégalité de Poincaré, l’inégalité triangulaire et une inégalité inverse,
on obtient :

C

h
‖ϕhp‖0,ΩΓ

h
6 ‖∇ϕhp‖0,ΩΓ

h
6 ‖∇u‖0,ΩΓ

h
+ ‖∇(u− ϕhp)‖0,ΩΓ

h

6 ‖∇u‖0,ΩΓ
h

+ C

h
‖u− ϕhp‖0,ΩΓ

h
,

ce qui donne le résultat.

2.1.2 Coercivité de la forme bilinéaire

Lemme 2.5. Pour γ et σD suffisamment grands, la forme bilinéaire donnée par

ah(u, p; v, q) =
∫

Ωh
∇u · ∇v −

∫
∂Ωh

∂u

∂n
v + γ

h2

∫
ΩΓ
h

(u− 1
h
ϕhp)(v −

1
h
ϕhq)

+ σDh
∑
F∈FΓ

h

∫
F

[
∂u

∂n

] [
∂v

∂n

]
+ σDh

2
∫

ΩΓ
h

∆u∆v , (2.3)

est coercive sur V (k)
h , selon la norme

|||(u, p)|||2h = |u|21,Ωh + 1
h2

∥∥∥∥u− 1
h
ϕhp

∥∥∥∥2

0,ΩΓ
h

+ h
∑
F∈FΓ

h

∥∥∥∥[∂u∂n
]∥∥∥∥2

0,F
+ h2‖∆u‖20,ΩΓ

h
. (2.4)

Preuve. Soit Bh la bande entre ∂Ωh et Γh, définie par Bh = {ϕh > 0} ∩ Ωh. Puisque
ϕh = 0 sur Γh, le terme de bord de (2.3) peut être réécrit pour tout u sous la forme :

∫
∂Ωh

∂u

∂n
u =

I︷ ︸︸ ︷∫
Bh

|∇u|2 +

II︷ ︸︸ ︷∫
Γh

∂u

∂n
(u− 1

h
ϕhp)

−
∑
F∈FΓ

h

∫
F∩Bh

[
∂u

∂n

]
u

︸ ︷︷ ︸
III

+
∫
Bh

∆(u)u︸ ︷︷ ︸
IV

. (2.5)
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Avec le Lemme 2.1,

I 6 α|u|21,Ωh + βh
∑
F∈FΓ

h

∥∥∥∥[∂u∂n
]∥∥∥∥2

0,F
+ βh2‖∆u‖20,ΩΓ

h
,

pour tout β > 0. De plus, en utilisant l’inégalité de trace suivie d’une inégalité inverse,
pour tout ε > 0,

II 6 C

( 1√
h
‖∇u‖0,ΩΓ

h
+
√
h|∇u|1,ΩΓ

h

)( 1√
h

∥∥∥∥u− 1
h
ϕhp

∥∥∥∥
0,ΩΓ

h

+
√
h

∣∣∣∣u− 1
h
ϕhp

∣∣∣∣
1,ΩΓ

h

)

6
C

h
|u|1,ΩΓ

h

∥∥∥∥u− 1
h
ϕhp

∥∥∥∥
0,ΩΓ

h

6 Cε|u|21,ΩΓ
h

+ C

εh2

∥∥∥∥u− 1
h
ϕhp

∥∥∥∥2

0,ΩΓ
h

.

Pour le terme III, en utilisant les inégalités de Cauchy-Schwarz, de Young combinée à
l’inégalité de trace puis le Lemme 2.4, on a

III 6

h ∑
F∈FΓ

h

∥∥∥∥[∂u∂n
]∥∥∥∥2

0,F


1/21

h

∑
F∈FΓ

h

‖u‖20,F


1/2

6
C

ε
h
∑
F∈FΓ

h

∥∥∥∥[∂u∂n
]∥∥∥∥2

0,F
+ Cε

h

(1
h
‖u‖20,ΩΓ

h
+ h|u|21,ΩΓ

h

)

6
C

ε
h
∑
F∈FΓ

h

∥∥∥∥[∂u∂n
]∥∥∥∥2

0,F
+ Cε|u|21,ΩΓ

h
+ Cε

h2

∥∥∥∥u− 1
h
ϕhp

∥∥∥∥2

0,ΩΓ
h

.

Enfin, pour le terme IV ,

IV 6
Ch2

ε
‖∆u‖20,ΩΓ

h
+ Cε

h2 ‖u‖
2
0,ΩΓ

h

6
Ch2

ε
‖∆u‖20,ΩΓ

h
+ Cε|u|21,ΩΓ

h
+ Cε

h2

∥∥∥∥u− 1
h
ϕhp

∥∥∥∥2

0,ΩΓ
h

.

Ainsi,
∫
∂Ωh

∂u

∂n
u 6 (α+ Cε)|u|21,Ωh

+
(
C

ε
+ β

)h ∑
F∈FΓ

h

∥∥∥∥[∂u∂n
]∥∥∥∥2

0,F
+ h2‖∆u‖20,ΩΓ

h


+
(
Cε+ C

ε

) 1
h2

∥∥∥∥u− 1
h
ϕhp

∥∥∥∥2

0,ΩΓ
h

.
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Alors, en utilisant l’expression (2.3),

ah(u, p;u, p) > (1− α− Cε)|u|21,Ωh

+
(
σD −

C

ε
− β

)h ∑
F∈FΓ

h

∥∥∥∥[∂u∂n
]∥∥∥∥2

0,F
+ h2‖∆u‖20,ΩΓ

h


+
(
γ − Cε− C

ε

) 1
h2

∥∥∥∥u− 1
h
ϕhp

∥∥∥∥2

0,ΩΓ
h

.

Finalement, en prenant ε suffisamment petit, σD et γ assez grands, on obtient

ah(u, p;u, p) > C|||(u, p)|||2h .

2.1.3 Preuve de l’estimation H1.

Preuve du Théorème 2.1, estimation H1. Soit ũ ∈ Hk+1(Ωh) une extension de la solu-
tion u de Ω à Ωh, telle que ũ = u sur Ω et

‖ũ‖k+1,Ωh 6 C‖u‖k+1,Ω 6 C‖f‖k−1,Ω.

On considère f̃ := −∆ũ et p = h
ϕ ũ. Alors,

ah(ũ, p; vh, qh) =
∫

Ωh
f̃vh − σDh2

∫
ΩΓ
h

f̃∆vh

+ γ

h2

∫
ΩΓ
h

(ũ− 1
h
ϕhp)(vh −

1
h
ϕhqh) , ∀(vh, qh) .

Ainsi, on obtient l’orthogonalité de Galerkin suivante

ah(ũ− uh, p− ph; vh, qh) =
∫

Ωh
(f̃ − f)vh − σDh2

∫
ΩΓ
h

(f̃ − f)∆vh

+ γ

h2

∫
ΩΓ
h

(ũ− 1
h
ϕhp)(vh −

1
h
ϕhqh) , ∀(vh, qh) . (2.6)

Alors, par coercivité (c.f. Lemme 2.5),

c|||(uh − Ihũ, ph − Ihp)|||h 6 sup
(vh,qh)

ah(uh − Ihũ, ph − Ihp; vh, qh)
|||(vh, qh)|||h

6 sup
(vh,qh)

I − II − III
|||(vh, qh)|||h

,

avec

I = ah(eu, ep; vh, qh) ,

II =
∫

Ωh
(f̃ − f)vh − σDh2

∫
ΩΓ
h

(f̃ − f)∆vh ,

III = γ

h2

∫
ΩΓ
h

(ũ− 1
h
ϕhp)(vh −

1
h
ϕhqh) ,
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où eu = ũ− Ihũ et ep = p− Ihp.
Estimons chacun des termes. À l’aide de l’expression (2.5) :

I =
∫

Ωh
∇eu · ∇vh −

∫
∂Ωh

∂eu
∂n

vh + γ

h2

∫
ΩΓ
h

(eu −
1
h
ϕhep)(vh −

1
h
ϕhqh)

+ σDh
∑
F∈FΓ

h

∫
F

[
∂eu
∂n

] [
∂vh
∂n

]
+ σDh

2 ∑
T∈T Γ

h

∫
T

∆eu∆vh

6 |eu|1,Ωh |vh|1,Ωh −
∫
Bh

∇eu · ∇vh −
∫
Bh

∆euvh +
∑

F∈FΓ
h
∩Bh

∫
F
eu

[
∂vh
∂n

]

−
∫

Γh

∂eu
∂n

(vh −
1
h
ϕhqh) + γ

h2

∫
ΩΓ
h

(eu −
1
h
ϕhep)(vh −

1
h
ϕhqh)

+ σDh
∑
F∈FΓ

h

∫
F

[
∂eu
∂n

] [
∂vh
∂n

]
+ σDh

2 ∑
T∈T Γ

h

∫
T

∆eu∆vh .

En utilisant l’inégalité de trace [23, Lemme 3.5], les inégalités d’interpolation et l’expres-
sion (2.4),

I 6 Chk‖ũ‖k+1,Ωh |||(vh, qh)|||h 6 Chk‖f‖k−1,Ω|||(vh, qh)|||h .

Pour le terme II, puisque f̃ = f sur Ω, et en rappelant que l’on a supposé Ω ⊂ Ωh, on a

II 6 C‖f̃ − f‖0,Ωh\Ω
(
‖vh‖0,Ωh\Ω + σh2‖∆vh‖0,Ωh\Ω

)
6 Chk−1‖f̃ − f‖k−1,Ωh\Ω

(
h|vh|1,Ωh +

∥∥∥∥v − 1
h
ϕhq

∥∥∥∥
0,ΩΓ

h

+ σh2‖∆vh‖0,ΩΓ
h

)
6 Chk‖f‖k−1,Ωh |||(vh, qh)|||h .

Il ne reste finalement plus qu’à estimer le terme III. Alors,

III 6
C

h
‖ũ− 1

h
ϕhp‖0,ΩΓ

h
|||(vh, qh)|||h .

Or, puisque ũ = 1
hpϕ sur ΩΓ

h,

III 6
C

h
‖ϕ− ϕh‖∞

∥∥∥∥ph
∥∥∥∥

0,ΩΓ
h

|||(vh, qh)|||h .

En utilisant les inégalités d’interpolation et l’inégalité de Hardy (cf. [28, Lemme 3.1]),

III 6 Chk‖ϕ‖W∞
k+1
‖ũ‖1,ΩΓ

h
|||(vh, qh)|||h

6 Chk‖f‖k−1,Ω|||(vh, qh)|||h .

À l’aide des estimations de (I)− (III), par définition de |||·|||h, on obtient ainsi

|uh − Ihũ|1,Ωh 6 |||(uh − Ihũ, ph − Ihp)|||h 6 Chk‖f‖k−1,Ω .
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Finalement, par inégalité triangulaire et les inégalités d’interpolation,

|uh − u|1,Ω 6 |uh − Ihũ|1,Ωh + |Ihũ− ũ|1,Ωh
6 Chk‖f‖k−1,Ω + Chk‖ũ‖k+1,Ωh

6 Chk‖f‖k−1,Ω .

2.1.4 Preuve de l’estimation L2.

Preuve du Théorème 2.1, estimation L2. Soit w : Ω→ R, telle que{
−∆w = u− uh, dans Ω,
w = 0, sur Γ .

Par régularité elliptique,
‖w‖2,Ω 6 C‖u− uh‖0,Ω.

Soient w̃ une extension H2 de w de Ω à Ωh telle que

‖w̃‖2,Ω 6 C‖w‖2,Ω

et wh := Ihw̃.
À l’aide d’une intégration par partie, on remarque que

‖u− uh‖20,Ω =
∫

Ω
(u− uh)(−∆w) =

∫
Ω
∇(u− uh) · ∇w −

∫
Γ

∂w

∂n
(u− uh)

=
∫

Ω
∇(u− uh) · ∇(w − wh) +

∫
Ω
∇(u− uh) · ∇wh −

∫
Γ

∂w

∂n
(u− uh)

6 Chk+1‖f‖k−1,Ωh |w̃|2,Ωh +
∣∣∣∣∫

Ω
∇(u− uh) · ∇wh

∣∣∣∣− ∫
Γ

∂w

∂n
(u− uh) .

Pour traiter le dernier terme, nous remarquons que

−
∫

Γ

∂w

∂n
(u− uh) ≤

∥∥∥∥∂w∂n
∥∥∥∥

0,Γ
‖u− uh‖0,Γ ≤ C‖u− uh‖0,Γ‖u− uh‖0,Ω.

De plus, comme la distance entre Γ et Γh est d’ordre hk+1, on a

‖u− uh‖0,Γ ≤ C(‖ũ− uh‖0,Γh + h(k+1)/2|ũ− uh|1,Ωh)

= C(‖1
h

(ϕ− ϕh)p‖0,Γh + h(k+1)/2|ũ− uh|1,Ωh)

= C(hk+1‖ϕ‖Wk+1
∞ (ΩΓ

h
)‖

1
h
p‖0,Γh + h(k+1)/2|ũ− uh|1,Ωh)

≤ C(hk+1‖ũ‖2,Ωh + h(k+1)/2+k‖f‖k−1,Ωh).

D’où,
−
∫

Γ

∂w

∂n
(u− uh) ≤ Chk+1‖f‖k−1,Ωh‖u− uh‖0,Ω.



2.1. LE SCHÉMA ϕ-FEM « DUAL » 23

En utilisant les expressions (2.3) et (2.6), avec vh = wh et qh = 0, on obtient∫
Ωh
∇(ũ− uh) · ∇wh −

∫
∂Ωh

∂(ũ− uh)
∂n

wh

+ γ

h2

∫
ΩΓ
h

(uh −
1
h
ϕhph)wh + σDh

∑
F∈FΓ

h

∫
F

[
∂(ũ− uh)

∂n

] [
∂wh
∂n

]

+ σDh
2
∫

ΩΓ
h

∆(ũ− uh)∆wh =
∫

Ωh
(f̃ − f)wh

− σDh2
∫

ΩΓ
h

(f̃ − f)∆wh .

On rappelle que ũ = u sur Ω, ce qui entraîne

‖u− uh‖20,Ω 6 Chk+1‖f‖k−1,Ωh‖u− uh‖0,Ω +

I︷ ︸︸ ︷∣∣∣∣∣
∫

Ωh\Ω
∇(ũ− uh) · ∇wh

∣∣∣∣∣
+

II︷ ︸︸ ︷∣∣∣∣∫
∂Ωh

∂(ũ− uh)
∂n

wh

∣∣∣∣+
III︷ ︸︸ ︷∣∣∣∣∣ γh2

∫
ΩΓ
h

(uh −
1
h
ϕhph)wh

∣∣∣∣∣

+

IV︷ ︸︸ ︷∣∣∣∣∣∣∣σDh
∑
F∈FΓ

h

∫
F

[
∂(ũ− uh)

∂n

] [
∂wh
∂n

]∣∣∣∣∣∣∣+
∣∣∣∣∣σDh2

∫
ΩΓ
h

∆(ũ− uh)∆wh

∣∣∣∣∣︸ ︷︷ ︸
V

+
∣∣∣∣∫

Ωh
(f̃ − f)wh

∣∣∣∣︸ ︷︷ ︸
V I

+
∣∣∣∣∣σDh2

∫
ΩΓ
h

(f̃ − f)∆wh

∣∣∣∣∣︸ ︷︷ ︸
V II

.

Pour le terme I, on utilise l’estimation H1, une inégalité inverse et le Lemme 2.3 :

I 6 C|ũ− uh|1,Ωh |wh|1,Ωh\Ω 6 Chk‖u‖k+1,Ωhh
1/2‖w‖2,Ω .

Pour le terme II, en utilisant l’inégalité de trace [28, Lemme 3.5],

II 6 C

(√
h|∇(ũ− uh)|1,ΩΓ

h
+ 1√

h
‖∇(ũ− uh)‖0,ΩΓ

h

)(√
h|wh|1,ΩΓ

h
+ 1√

h
‖wh‖0,ΩΓ

h

)
.

Or, par inégalité triangulaire, inégalité inverse et inégalité d’interpolation,
√
h|∇(ũ− uh)|1,ΩΓ

h
6
√
h
(
|∇(ũ− Ihũ)|1,ΩΓ

h
+ |∇(Ihũ− uh)|1,ΩΓ

h

)
6
√
h

(
hk−1|ũ|k+1,Ωh + 1

h
|Ihũ− uh|1,ΩΓ

h

)
6
√
h

(
hk−1|ũ|k+1,Ωh + 1

h
|Ihũ− ũ|1,ΩΓ

h
+ 1
h
|ũ− uh|1,ΩΓ

h

)
6 hk−1/2|ũ|k+1,Ωh .
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De plus, par inégalité de Poincaré et le Lemme 2.3
√
h|wh|1,ΩΓ

h
+ 1√

h
‖wh‖0,ΩΓ

h
6 C
√
h|wh|1,ΩΓ

h
6 Ch‖w‖2,Ω .

Finalement, on obtient ainsi

II 6 Chk−1/2‖f‖k−1,Ωh‖w‖2,Ω 6 Chk+1/2‖f‖k−1,Ω‖w‖2,Ω .

Pour le terme III, on a

III 6
γ

h2

∥∥∥∥uh − 1
h
ϕhph

∥∥∥∥
0,ΩΓ

h

‖wh‖0,ΩΓ
h
.

Estimons les deux termes∥∥∥∥uh − 1
h
ϕhph

∥∥∥∥
0,ΩΓ

h

6
∥∥∥∥uh − Ihũ− 1

h
ϕh(ph − Ihp)

∥∥∥∥
0,ΩΓ

h

+
∥∥∥∥Ihũ− 1

h
ϕhIhp

∥∥∥∥
0,ΩΓ

h

6 h|||(uh − Ihũ, ph − Ihp)|||h +
∥∥∥∥Ihũ− 1

h
ϕhIhp

∥∥∥∥
0,ΩΓ

h

6 Chk+1‖f‖k−1,Ω +
∥∥∥∥Ihũ− 1

h
ϕhIhp

∥∥∥∥
0,ΩΓ

h

.

Or, par inégalité triangulaire et de Hardy∥∥∥∥Ihũ− 1
h
ϕhIhp

∥∥∥∥
0,ΩΓ

h

6 ‖Ihũ− ũ‖0,ΩΓ
h

+
∥∥∥∥1
h
ϕp− 1

h
ϕhp

∥∥∥∥
0,ΩΓ

h

+
∥∥∥∥1
h
ϕhp−

1
h
ϕhIhp

∥∥∥∥
0,ΩΓ

h

6 Chk+1‖ũ‖k+1,Ωh + Chk+1‖ϕ‖Wk+1
∞ (ΩΓ

h
)

∥∥∥∥ph
∥∥∥∥

0,ΩΓ
h

+ C‖p− Ihp‖0,ΩΓ
h

6 Chk+1‖ũ‖k+1,Ωh + Chk+1
∥∥∥∥ph
∥∥∥∥
k,ΩΓ

h

6 Chk+1‖ũ‖k+1,Ωh .

De plus, d’après l’inégalité de Poincaré et le Lemme 2.3,

‖wh‖0,ΩΓ
h
6 Ch |wh|1,ΩΓ

h
6 Ch3/2 ‖w‖2,Ω .

D’où,
III 6 Chk−1‖ũ‖k+1,Ωhh

3/2‖w‖2,Ω 6 Chk+1/2‖f‖k−1,Ω‖w‖2,Ω .
Pour le terme IV , en utilisant le raisonnement appliqué au terme II, on obtient

IV 6 Chhk−1/2‖f‖k−1,Ω‖w‖2,Ω 6 Chk+1/2‖f‖k−1,Ω‖w‖2,Ω .

Pour le terme V ,

V 6 σDh
2
(
|ũ− Ihũ|2,ΩΓ

h
+ |Ihũ− uh|2,ΩΓ

h

)
‖w‖2,Ω

6 σDh
2
(
Chk−1‖ũ‖k+1,ΩΓ

h
+ C

h
|Ihũ− uh|1,ΩΓ

h

)
‖w‖2,Ω

6 σDh
2
(
Chk−1‖ũ‖k+1,ΩΓ

h
+ C

h
(|Ihũ− ũ|1,ΩΓ

h
+ |ũ− uh|1,ΩΓ

h
)
)
‖w‖2,Ω

6 σDh
k+1‖f‖k−1,Ω‖w‖2,Ω .
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Pour les termes V I et V II, on a de manière similaire,

V I + V II 6 Chk−1‖f‖k−1,Ωh
3/2‖w‖2,Ω + Chk+1‖f‖k−1,Ω‖w‖2,Ω

6 Chk+1/2‖f‖k−1,Ω‖w‖2,Ω .

Finalement, en combinant toutes les estimations précédentes, on obtient

‖u− uh‖20,Ω 6 Chk+1/2‖f‖k−1,Ωh‖u− uh‖0,Ω ,

ce qui mène à la conclusion.

2.1.5 Conditionnement

Théorème 2.2. On suppose que les Hypothèses 2.1.1 et 2.1.2 sont satisfaites et on
rappelle que l’on considère un maillage Th quasi-uniforme. Alors, le conditionnement de
la matrice éléments finis A associée à la forme bilinéaire ah vérifie κ(A) 6 Ch−2 où
κ(A) = ‖A‖2‖A−1‖2.

Démonstration. On rappelle (cf. [23, Equation (17)]) que, pour tout qh ∈ Q(k)
h (ΩΓ

h),

‖qh‖0,ΩΓ
h
6 Ch−1‖ϕhqh‖0,ΩΓ

h
.

On suppose, sans perte de généralité, que h < 1. On cherche dans un premier temps à
démontrer que

ah(vh, qh; vh, qh) > C
(
‖vh‖20,Ωh + ‖qh‖20,ΩΓ

h

)
. (2.7)

Or, en utilisant le Lemme 2.4 et la coercivité de ah,

‖qh‖0,ΩΓ
h
6
∥∥∥∥1
h
ϕhqh

∥∥∥∥
0,Ωh

6 C

(
h‖∇vh‖0,ΩΓ

h
+
∥∥∥∥vh − 1

h
ϕhqh

∥∥∥∥
0,ΩΓ

h

)
6 Ch|||(vh, qh)|||h .

De plus, en utilisant l’inégalité de Poincaré [11, Equation (1.1)] combinée à l’inégalité de
trace

‖vh‖0,Ωh 6 C (|vh|1,Ωh + ‖vh‖0,∂Ωh)

6 C

(
|vh|1,Ωh + 1√

h
‖vh‖0,ΩΓ

h

)
6 C

(
|vh|1,Ωh + 1√

h

∥∥∥∥vh − 1
h
ϕhqh

∥∥∥∥
0,ΩΓ

h

+ 1√
h

∥∥∥∥1
h
ϕhqh

∥∥∥∥
0,ΩΓ

h

)
6 C|||(vh, qh)|||h .

Finalement, en utilisant la coercivité de ah,

ah(vh, qh; vh, qh) > C|||(vh, qh)|||2h > C
(
‖vh‖20,Ωh + ‖qh‖20,ΩΓ

h

)
.
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Dans un second temps, montrons que

ah(vh, qh; vh, qh) 6 C

h2

(
‖vh‖20,Ωh + ‖qh‖20,ΩΓ

h

)
. (2.8)

Par définition de ah (cf. (2.3)) et en utilisant l’inégalité de Cauchy-Schwarz,

ah(vh, qh; vh, qh) 6 C

(
|vh|21,Ωh +

∥∥∥∥∂vh∂n
∥∥∥∥

0,∂Ωh
‖vh‖0,∂Ωh + 1

h2 ‖vh‖
2
0,ΩΓ

h

+ 1
h2

∥∥∥∥1
h
ϕhqh

∥∥∥∥2

0,ΩΓ
h

+ h

∥∥∥∥∂vh∂n
∥∥∥∥2

0,∂Ωh
+ h2|vh|22,ΩΓ

h

)
.

Alors, en utilisant l’inégalité de trace, et l’inégalité inverse, on obtient,

ah(vh, qh; vh, qh) 6 C

( 1
h2 ‖vh‖

2
0,Ωh + 1

h3/2
1√
h
‖vh‖20,ΩΓ

h

+ 1
h2 ‖qh‖

2
0,ΩΓ

h
+ 1
h2 ‖vh‖

2
0,ΩΓ

h

)
,

ce qui donne le résultat désiré.
Appelons N la dimension de V (k)

h ×Q(k)
h (ΩΓ

h) et associons à tout
(vh, qh) ∈ V (k)

h × Q(k)
h (ΩΓ

h) le vecteur v ∈ RN des coefficients de (vh, qh) dans la base
éléments finis standard. Rappelons que le maillage est quasi-uniforme et en utilisant
l’équivalence de normes sur un élément de référence, on a

C1h
d/2|v|2 ≤ ‖vh‖0,Ωh + ‖qh‖0,ΩΓ

h
≤ C2h

d/2|v|2. (2.9)

Les bornes (2.9) et (2.8) donnent

‖A‖2 = sup
v∈RN

(Av,v)
|v|22

= sup
v∈RN

ah(vh, qh; vh, qh)
|v|22

≤ Chd sup
(vh,qh)∈V (k)

h
×Q(k)

h
(ΩΓ
h

)

ah(vh, qh; vh, qh)
‖vh‖20,Ωh + ‖qh‖20,ΩΓ

h

≤ Chd−2.

De la même manière, (2.9) et (2.7) impliquent

‖A−1‖2 = sup
v∈RN

|v|22
(Av,v) = sup

v∈RN

|v|22
ah(vh, qh; vh, qh)

≤ C

hd
sup

(vh,qh)∈V (k)
h
×Q(k)

h
(ΩΓ
h

)

‖vh‖20,Ωh + ‖qh‖20,ΩΓ
h

ah(vh, qh; vh, qh) ≤ C

hd
,

ce qui mène au résultat.
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2.1.6 Résultats numériques

Nous allons maintenant illustrer sur plusieurs cas test la convergence numérique de
cette méthode, comparée au premier schéma ϕ-FEM introduit dans [28] et rappelé à
la Section 1.2, qui sera appelé schéma direct. Nous comparerons également les deux
approches à une méthode standard conforme (cf. (1.3)).
Remarque 2.3 (Normes considérées). Pour illustrer la convergence des méthodes, nous
considérerons les normes suivantes :

‖uh − uref‖2L2(Ωref)
‖uref‖2L2(Ωref)

≈
∫

Ωref
|uh − uref|2dx∫

Ωref
|uref|2dx , (2.10)

et
|uh − uref|2H1(Ωref)
|uref|2H1(Ωref)

≈
∫

Ωref
|∇uh −∇uref|2dx∫
Ωref
|∇uref|2dx , (2.11)

où l’on note uh une approximation de la projection orthogonale L2 de la solution calculée,
sur un maillage de référence Tref du domaine Ωref, approximation de Ω et uref une solution
de référence (manufacturée ou solution fine éléments finis).

Cas test 1 : Conditions non homogènes, sur un disque. Dans un premier temps,
considérons l’équation (1.1), avec conditions de Dirichlet non homogènes au bord (i.e.
u = uD 6= 0 sur Γ). Le domaine Ω sera le disque centré en (0.5, 0.5) de rayon 0.3125.
Pour illustrer l’un des intérêts de l’approche duale par rapport à l’approche directe, le
domaine Ω sera décrit par deux fonctions level-set différentes. Dans un premier temps, la
version la plus lisse et la plus adaptée à l’approche directe sera utilisée, en définissant la
parabole

ϕ1(x, y) = −0.31252 + (x− 0.5)2 + (y − 0.5)2 .

Dans un second temps, nous utiliserons l’équation correspondant à la distance signée
au cercle, c’est-à-dire

ϕ2(x, y) = −0.3125 +
√

(x− 0.5)2 + (y − 0.5)2 .

Les erreurs seront calculées par rapport à une solution très fine FEM standard
(calculée avec h ≈ 0.001). Le second membre est donné par f(x, y) = −1 et les conditions
de bord sont données par uD(x, y) = cos(xπ3 ) sin(yπ5 ). On se place enfin dans le cas
d’éléments finis P1 (i.e. k = 1).

On représente les résultats obtenus à la Figure 2.1, illustrant que l’ordre de convergence
théorique est atteint en norme H1 et dépassé en norme L2. Cependant, il est important de
distinguer deux cas, puisque les résultats des deux schémas ϕ-FEM sont comparables lors
de l’utilisation de la level-set ϕ2 (traits pleins), tandis que l’utilisation de la fonction
ϕ1 (traits discontinus) améliore grandement les performances du schéma direct. Cette
variation de résultats pour le schéma direct (absente pour le schéma dual, les courbes
vertes étant presque superposées) peut notamment s’expliquer par la présence d’une
singularité sur le gradient de ϕ2 qui n’a pas d’influence sur le schéma dual.
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Figure 2.1 – Cas test 1. Erreurs relatives L2 (gauche) et H1 (droite) des trois méthodes,
en fonction de la taille de cellule. Pour les méthodes ϕ-FEM, les pointillés correspondent
à ϕ1 et les traits pleins à ϕ2.

Dans un cas pratique où l’on ne disposerait que d’une distance signée à la frontière, le
schéma dual serait ainsi plus adapté.

On représente également à la Figure 2.2 le temps de calcul de chacune des méthodes
en fonction de la taille de cellule (gauche) et de l’erreur relative L2 (droite). Cela permet
d’illustrer la différence entre les deux schémas ϕ-FEM due notamment à l’introduction
de la variable auxiliaire p et donc à la résolution d’un système de taille plus élevée pour
la version duale. Il est également important de préciser que les implémentations et en
particulier les solveurs utilisés diffèrent légèrement de par la nécessité de restreindre les
espaces de fonctions pour ϕ-FEM dual, ce qui est implémenté à l’aide de la librairie
multiphenicsx 1.

Enfin, un dernier aspect numérique que l’on choisit de vérifier est le conditionnement
de la matrice éléments finis associée à chacune des méthodes. On représente à la Figure 2.3
les résultats obtenus par les 3 méthodes, illustrant numériquement que le conditionnement
est comme annoncé en théorie (cf. Théorème 2.2) d’ordre 2.

Cas test 2 : Solution manufacturée sur un disque. Il est également intéressant
d’étudier le comportement des différentes méthodes lors de l’utilisation d’éléments finis
de degré plus élevé. Pour cela, on considère la géométrie précédente, cette fois de rayon√

2/4 et une solution manufacturée donnée par

uex(x, y) = sin(R(x, y))× exp(x)× sin(y) ,

avec R(x, y) = −r2 + (x − 0.5)2 + (y − 0.5)2 et r =
√

2/4. On détermine alors f
analytiquement et on impose des conditions homogènes au bord (puisque uex = 0 sur Γ).

Dans un premier temps, pour des éléments finis de degré 1, on compare une nouvelle
fois ϕ-FEM direct et dual avec Standard-FEM. On compare de plus les trois approches à
la méthode CutFEM implémentée avec le package Python CutFEMx.

1. https://multiphenics.github.io/

https://multiphenics.github.io/
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Figure 2.2 – Cas test 1. Temps de calcul en fonction de la taille de cellule (gauche) et
de l’erreur relative L2 (droite) des trois méthodes.
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Figure 2.3 – Cas test 1. Conditionnement des matrices éléments finis associées à
chaque méthode, en fonction de h.

Remarque 2.4. Pour ce cas test, dans le cas d’éléments P1, pour des raisons d’implé-
mentation numérique et une comparaison honnête entre les différentes méthodes et en
particulier la méthode CutFEM, l’erreur sera calculée différemment de précédemment et
sera donnée par (

1
N

∑N
i=1(uex(xi, yi)− uh,i)2

)0.5

(
1
N

∑N
i=1 uex(xi, yi)2

)0.5 ,

où (xi, yi) sont les coordonnées du nœud i des maillages considérés, et uh,i la solution de
chaque méthode au même nœud.

On obtient alors les résultats représentés à la Figure 2.4 qui confirment les ordres de
convergence annoncés pour chaque méthode. Les résultats obtenus avec les méthodes
CutFEM et la méthode duale ϕ-FEM sont très proches numériquement, ce qui met en
évidence l’intérêt de ϕ-FEM. Celle-ci permet en effet d’obtenir une précision équivalente
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tout en bénéficiant d’une implémentation nettement plus simple, sans utilisation de
package spécifique.
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Figure 2.4 – Cas test 2. Erreurs relatives L2 des méthodes, en fonction de la taille de
cellule.

Pour les éléments finis P2, les erreurs sont calculées selon (2.10) et (2.11) sur un
maillage de référence, avec uref = uex. On représente les résultats obtenus à la Figure
2.5, où l’on observe que les ordres de convergence théoriques sont également atteints (et
mêmes dépassés en norme L2) par les deux approches ϕ-FEM, pour du degré k = 2.
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Figure 2.5 – Cas test 2. Erreurs relatives L2 (gauche) et H1 (droite) des trois méthodes,
en fonction de la taille de cellule.

Cas test 3 : Une géométrie plus complexe. Pour le troisième cas test, nous allons
considérer une situation plus complexe, tant pour les méthodes éléments finis classiques
que pour les méthodes non-conformes.
Pour cela, nous considérerons une géométrie définie à partir d’un produit de fonctions
gaussiennes, selon l’expression (5.3), présentée en Section 5.1.2.



2.1. LE SCHÉMA ϕ-FEM « DUAL » 31

0.0e+00 4.8e-03 9.7e-03 1.5e-02 1.9e-02
  

0.0e+00 9.2e-07 1.8e-06 2.8e-06 3.7e-06
   

1.2e-16 3.7e-06 7.5e-06 1.1e-05 1.5e-05
    

7.4e-11 5.5e-06 1.1e-05 1.6e-05 2.2e-05
     

Figure 2.6 – Cas test 3. À gauche : solution de référence. Puis, de gauche à droite :
différence entre la solution de référence et la projection de la solution FEM Standard, de
la solution ϕ-FEM direct, et de la solution ϕ-FEM duale.

Remarque 2.5 (Construction de maillages sur des géométries complexes). Comme nous
l’avons remarqué en introduction, l’une des principales difficultés des méthodes éléments
finis classiques est la construction de maillages conformes pour des géométries complexes.
Pour construire de tels maillages, notamment à partir de fonctions level-set, nous avons
utilisé le package pymedit 2 ainsi que Mmg 3. Plus de détails sur l’approche utilisée et
notamment la correction des nœuds de bord sont proposés à la Section 5.1.1.

La solution de référence ainsi que la différence entre les projections sur le maillage de
référence des solutions obtenues avec chaque méthode et la solution de référence sont
représentées à la Figure 2.6.

10−2

h

10−4

10−3

10−2

L
2

R
el

at
iv

e
er

ro
r

2

Direct ϕ-FEM

Standard FEM

Dual ϕ-FEM

10−2

h

10−2

10−1

H
1

R
el

at
iv

e
er

ro
r

1

Direct ϕ-FEM

Standard FEM

Dual ϕ-FEM

Figure 2.7 – Cas test 3. Erreurs relatives L2 (gauche) et H1 (droite) des trois méthodes,
en fonction de la taille de cellule.

Les erreurs des méthodes sont ici calculées par rapport à une solution de référence
FEM standard sur un maillage très fin (h ≈ 0.001). Les résultats obtenus pour les deux
schémas ϕ-FEM et Standard-FEM sont représentés à la Figure 2.7.

2. https://pypi.org/project/pymedit/
3. https://www.mmgtools.org/

https://pypi.org/project/pymedit/
https://www.mmgtools.org/
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On observe alors des performances très proches pour les trois méthodes à taille de cellule
équivalente, chacune suivant les ordres de convergence optimaux en norme L2 et en norme
H1. On représente également le temps de calcul en fonction de l’erreur relative L2 à la
Figure 2.8 (gauche) et de l’erreur relative H1 (droite), qui illustrent alors que pour une
erreur équivalente, en norme L2 comme en norme H1, les résultats sont obtenus bien
plus rapidement pour les deux méthodes ϕ-FEM que pour la méthode standard.
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Figure 2.8 – Cas test 3. Temps de calcul en fonction des erreurs relatives L2 (gauche)
et H1 (droite) des trois méthodes.

Cas test 4 : un cas 3D. Pour terminer les comparaisons entre les 3 méthodes, nous
allons considérer le cas d’une géométrie 3D, donnée par la fonction level-set

ϕ(x, y) = −0.31252 + (x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 ,

et une solution manufacturée donnée par

uex(x, y) = 1− exp(ϕ(x, y)2) ,

de sorte que uex = 0 sur Γ.
On représente à la Figure 2.9 la solution de référence (i.e. la solution exacte interpolée

sur un maillage conforme fin) ainsi que la différence entre les projections sur le maillage
de référence des solutions obtenues par chaque méthode et la solution de référence.

Les erreurs en normes relatives L2 et H1 sont représentées à la Figure 2.10, où
l’on observe que la convergence numérique est une nouvelle fois optimale en norme L2.
On observe une sur-convergence également en norme H1, puisque les trois méthodes
atteignent un ordre 1.5 en norme relative H1. Cependant, on peut remarquer que dans
cette situation, la méthode duale offre des résultats moins précis que les deux autres
méthodes.
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Figure 2.9 – Cas test 4. À gauche : solution de référence. Puis, de gauche à droite :
différence entre la solution de référence et la projection de la solution FEM Standard, de
la solution ϕ-FEM direct, et de la solution ϕ-FEM dual.
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Figure 2.10 – Cas test 4. Erreurs relatives L2 (gauche) et H1 (droite) des trois
méthodes, en fonction de la taille de cellule.

2.2 Traitement des conditions mixtes Dirichlet-Neumann

Nous allons maintenant nous intéresser à un cas plus complexe, impliquant un (ou
des) changement(s) de conditions de bord. Pour cela, on considère la forme générale de
l’équation de Poisson, donnée par

−∆u = f , dans Ω ,

u = 0 , sur ΓD ,
∇u · n = 0 , sur ΓN ,

(2.12)

où n est la normale unitaire extérieure à un domaine Ω, de frontière Γ = ΓN ∪ ΓD avec
ΓN ∩ ΓD = ∅ et f ∈ L2(Ω).

Dans cette section, nous allons introduire deux schémas ϕ-FEM pour résoudre (2.12).
Les deux schémas seront étudiés numériquement sur plusieurs cas test, en comparaison
avec une méthode éléments finis classique.
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Remarque 2.6. Le cas de conditions mixtes Dirichlet-Neumann est particulièrement
complexe pour toute méthode non conforme puisque la (ou les) jonction(s) entre la partie
Dirichlet et la partie Neumann de la frontière peut (peuvent) intervenir à l’intérieur d’une
cellule. Cependant, malgré une complexité plus élevée (autant sur l’aspect théorique que
l’aspect numérique), les méthodes non-conformes ont montré leur efficacité, notamment
CutFEM, comme dans [17] qui propose des estimations d’erreurs théoriques pour le cas
de l’équation (2.12) ou [44] qui propose des résultats numériques pour le cas de l’élasticité
linéaire.

Pour le schéma ϕ-FEM que nous allons construire, nous allons utiliser le schéma dual
(2.2) pour imposer les conditions de Dirichlet, et adopter une idée simple : si des cellules
contiennent la jonction entre frontière Neumann et frontière Dirichlet, aucune condition
de bord ne sera imposée.

En plus de la fonction level-set ϕ définissant le domaine selon (1.4), on introduit une
seconde level-set ψ permettant de séparer la frontière Γ en deux parties ΓD et ΓN ,

ΓD = Γ ∩ {ψ < 0} et ΓN = Γ ∩ {ψ > 0} .

On considère une nouvelle fois la boîte O de Rd avec d = 2, 3 telle que Ω ⊂ O. On
construit alors les maillages Th et T Γ

h selon (1.6) et (1.7) respectivement. On introduit
également les interpolations polynomiales de degré l > k, de ϕ et ψ sur Th, notées ϕh et
ψh.

Les domaines occupés respectivement par Th et T Γ
h sont une nouvelle fois notés Ωh et

ΩΓ
h. Le maillage T Γ

h est alors séparé en deux parties, en utilisant la level-set ψ,

T ΓD
h := {T ∈ T Γ

h : ψh 6 0 sur T} et T ΓN
h := {T ∈ T Γ

h : ψh > 0 sur T} , (2.13)

et on note ΩΓD
h , ΩΓN

h les domaines occupés par T ΓD
h et T ΓN

h respectivement.
De plus, il est nécessaire d’ajouter une troisième partie de frontière : en effet, on ne

peut pas considérer seulement les cas où la jonction entre ΓN et ΓD arrive sur des faces
du maillage T Γ

h (correspondant à la situation illustrée à la Figure 2.12). Il faut aussi
considérer que la jonction peut être située à l’intérieur d’une cellule du maillage. Dans
cette situation, on choisit de ne pas appliquer de conditions de bord à ces cellules.
On note T ΓInt

h := T Γ
h \ (T ΓD

h ∪ T ΓN
h ) , et le domaine correspondant à ce sous-maillage est

noté ΩΓInt
h (cf. Figure 2.11, (gauche) pour une représentation graphique des différents

sous-maillages). On remarque que

ΩΓ
h = ΩΓD

h ∪ ΩΓInt
h ∪ ΩΓN

h .

On note Ωi
h = Ωh\ΩΓ

h et ∂Ωi
h sa frontière. Soient ∂ΩΓD

h , ∂ΩΓN
h et ∂ΩΓInt

h les frontières
des domaines ΩΓD

h , ΩΓN
h et ΩΓInt

h intersectées avec ∂Ωh. On remarque alors que

∂Ωh = (∂ΩΓD
h ∩ ∂Ωh) ∪ (∂ΩΓInt

h ∩ ∂Ωh) ∪ (∂ΩΓN
h ∩ ∂Ωh).

Soit également l’ensemble de faces FΓ
h = FΓD

h ∪ FNSh où

FΓD
h :=

{
facette de T ΓD

h ∪ T ΓInt
h non incluse dans ∂Ωh

}
,
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et
FNSh :=

{
facette de T ΓN

h incluse dans ∂Ωi
h

}
.

Th
Γ

T ΓD
h

Interface

T ΓN
h T ΓInt

h Th
FNS

h

Γ

T ΓD
h

FΓD
h

Interface

T ΓN
h

FN
h

T ΓInt
h

FΓInt
h

Figure 2.11 – Représentation des cellules et faces des différents sous-maillages dans le
cas où la jonction entre ΓD et ΓN se produit dans une cellule. Sur la figure de droite, les
faces en traits pleins correspondent aux faces internes du maillage Th, celles en pointillés
aux faces de bord (i.e. les faces de ∂Ωh).

Remarque 2.7. Les ensembles FΓD
h et FNSh sont les mêmes que ceux introduits dans

les précédents schémas ϕ-FEM, à l’exception qu’ils sont restreints aux sous-maillages
correspondant à la partie Dirichlet de la frontière et à la partie Neumann. Les stabilisations
imposées dans les différents schémas ne sont pas imposées sur les mêmes faces : pour
le schéma Dirichlet (1.10) et (2.2) on considère toutes les faces de ΩΓ

h tandis que pour
Neumann, seulement une partie de ces faces sont considérées. Ainsi, il est important de
stabiliser correctement sur chaque portion de la frontière. En particulier, dans la situation
de la Figure 2.12, il est important de noter que la facette où la jonction entre ΓN et ΓD
intervient, est considérée comme n’appartenant ni à FΓD

h , ni à FNSh .

2.2.1 Présentation des schémas

Pour résoudre (2.12), nous proposons 2 méthodes ϕ-FEM différentes. Le premier
schéma suivra l’approche introduite dans [23], rappelée à la Section 1.2 pour l’imposition
des conditions de Neumann. Le second introduira lui une nouvelle variante permettant
d’imposer les conditions de bord de Neumann.

Premier schéma

Nous allons maintenant construire une combinaison du schéma introduit précédem-
ment pour les conditions de Neumann (voir (1.19)) et du schéma Dual pour les conditions
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Figure 2.12 – Représentation des cellules et faces des différents sous-maillages dans le
cas où la jonction entre ΓD et ΓN se produit sur une face de Th.

de Dirichlet (voir (2.2)). Ainsi, on considère u comme l’inconnue primaire sur le domaine
Ωh et on introduit une première variable auxiliaire pD sur ΩΓD

h pour imposer les conditions
de Dirichlet, par l’équation

u = ϕpD , sur ΩΓD
h .

Pour imposer les conditions de Neumann, on introduit comme à la Section 1.2 pour
traiter (1.13), une variable auxiliaire y sur ΩΓN

h , telle que y = −∇u. En utilisant une
nouvelle fois que n = ∇ϕ/|∇ϕ| sur Γ, on obtient

y · ∇ϕ = −pNϕ , sur ΩΓN
h ,

où pN est également une variable auxiliaire sur ΩΓN
h .

On retrouve finalement les trois équations permettant d’imposer les conditions de
bord

u = ϕpD , sur ΩΓD
h ,

y +∇u = 0 , sur ΩΓN
h ,

y∇ϕ+ pNϕ = 0 , sur ΩΓN
h .

Remarque 2.8. On reconnait de manière évidente les équations introduites pour traiter
les conditions de bord dans les schémas (1.19) et (2.2). La différence est ici dans les
domaines considérés, puisque les variables auxiliaires sont introduites uniquement sur
une partie de ΩΓ

h.
Pour discrétiser les différentes variables, on considère alors les espaces éléments finis

V
(k)
h (cf. (1.9)), Q(k)

h (ΩΓD
h ) (cf. (1.15)), Z(k)

h (ΩΓN
h ) (cf. (1.14)) et Q(k−1)

h (ΩΓN
h ) (cf. (1.15))

et on définit

W
(k)
h := V

(k)
h ×Q(k)

h (ΩΓD
h )× Z(k)

h (ΩΓN
h )×Q(k−1)

h (ΩΓN
h ) .
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Le schéma ϕ-FEM pour approcher la solution de (2.12) est finalement donné par :
trouver (uh, ph,D, yh, ph,N ) ∈W (k)

h tel que, pour tout (vh, qh,D, zh, qh,N ) ∈W (k)
h ,

∫
Ωh
∇uh · ∇vh −

∫
∂Ωh\∂Ωh,N

∂uh
∂n

vh + aD(uh, ph,D; vh, qh,D)

+ aN (uh, yh, ph,N ; vh, zh, qh,N ) +Gh(uh, vh) =
∫

Ωh
fvh + lD(vh) + lN (zh)

où

aD(uh, ph,D; vh, qh,D) = γ

h2

∫
ΩΓD
h

(uh −
1
h
ϕhph,D)(vh −

1
h
ϕhqh,D)

+ σDh
2
∫

ΩΓD
h
∪ΩΓInt

h

∆uh∆vh,

aN (uh, yh, ph,N ; vh, zh, qh,N ) =
∫
∂Ωh,N

yh.nvh + γu

∫
ΩΓN
h

(yh +∇uh)(zh +∇vh)

+ γp
h2

∫
ΩΓN
h

(yh · ∇ϕh + 1
h
ph,Nϕh)(zh · ∇ϕh + 1

h
qh,Nϕh)

+ γdiv

∫
ΩΓN
h

div yh div zh,

Gh(uh, vh) := σDh
∑

E∈FΓD
h

∫
E

[
∂uh
∂n

] [
∂vh
∂n

]
+ σNh

∑
E∈FNS

h

∫
E

[
∂uh
∂n

] [
∂vh
∂n

]
,

lD(vh) = −σDh2
∫

ΩΓD
h
∪ΩΓInt

h

f∆vh ,

et
lN (zh) = γdiv

∫
ΩΓN
h

f div zh.

Remarque 2.9 (Conditions non homogènes). Dans le cas de conditions de Dirichlet ou de
Neumann non homogènes, on appliquera le même principe que dans les Remarques 2.1
et 1.4, en adaptant les domaines considérés à ΩΓD

h et ΩΓN
h .

Second schéma

Présentons maintenant un second schéma ϕ-FEM. Ici, les conditions de Dirichlet
seront traitées de la même façon, c’est-à-dire via une variable pD telle que u = ϕpD sur
ΩΓD
h . De plus, on définit comme précédemment les maillages Th, T ΓD

h et T ΓN
h ainsi que

les domaines Ωh, ΩΓD
h et ΩΓN

h .
Soient également FNh l’ensemble des facettes de T ΓN

h , ainsi que FNSh et FΓD
h définis

comme précédemment. Soient p1 et p2 définis sur ΩΓN
h et considérons

ũ(p1, p2) = p1 + ϕ(g −∇p1 · ∇ϕ+ p2ϕ) sur ΩΓN
h .
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On remarque que
∂ũ(p1, p2)

∂n
= g sur ΓN .

De plus, u peut s’écrire sous la forme p1 + ϕ(g − ∇p1 · ∇ϕ + p2ϕ) avec p1 = u et
p2 = p. On cherchera donc uh sous cette forme sur ΩΓN

h par pénalisation.
On introduit alors les espaces éléments finis, comme considérés précédemment : u

sera discrétisée dans V (k)
h et pD dans Q(k)

h (ΩΓD
h ). Finalement, les variables p1 et p2 seront

elles discrétisées dans Q(k+1)
h (ΩΓN

h ) et Q(k)
h (ΩΓN

h ).
Soit

W
(k)
h := V

(k)
h ×Q(k)

h (ΩΓD
h )×Q(k+1)

h (ΩΓN
h )×Q(k)

h (ΩΓN
h ) .

Le schéma est alors donné par : trouver (uh, ph,D, ph,1, ph,2) ∈W (k)
h tel que

∫
Ωh
∇uh · ∇vh−

∫
∂ΩN

h

∇ũh ·nvh−
∫
∂ΩD

h
∪∂ΩInt

h

∇uh ·nvh + γ
1
h2

∫
ΩΓN
h

(uh− ũh)(vh− ṽh)

+ σN
h

∑
F∈FN

h

∫
F

[∇ũh · n][∇ṽh · n] + γ

∫
ΩΓN
h

(div(∇ũh) + fh)div(∇ṽh)

+ σNh
∑

F∈FNs
h

∫
F

[∇uh · n][∇vh · n] + γD
h2

∫
ΩΓD
h

(uh −
1
h
ϕhph,D − uD)(vh −

1
h
ϕhqh,D)

+ σDh
∑

F∈FΓD
h

∫
F

[∇uh · n][∇vh · n] + γDh
2
∫

ΩΓD
h

(∆uh + fh)∆vh =
∫

Ωh
fhvh ,

∀(vh, qh,D, qh,1, qh,2) ∈W (k)
h ,

où
ũh = ph,1 + ϕh(gh −∇ph,1 · ∇ϕh + ph,2ϕh) ,

et
ṽh = qh,1 + ϕh(−∇qh,1 · ∇ϕh + qh,2ϕh).

Dans la suite de cette section, cette version de ϕ-FEM sera notée ϕ-FEM-2.
Remarque 2.10. L’avantage de cette version du schéma est l’absence de la variable
vectorielle y. Cependant, en contrepartie, on trouve maintenant une variable p1 discrétisée
dans un espace de degré k+1. De plus, ce schéma nécessite plus de termes de stabilisation
ainsi qu’un paramètre de stabilisation supplémentaire.

2.2.2 Résultats numériques

Nous allons maintenant étudier numériquement les deux schémas proposés précédem-
ment. Pour cela nous allons considérer différentes situations. Dans un premier temps, le
cas le plus simple sans jonction entre les frontières ΓD et ΓN sera étudié. Dans ce cas,
la solution ne présentera pas de singularité. Dans un second temps, nous considérerons
un premier cas présentant deux singularités de changement de conditions de bord, avec
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le cas d’un carré tourné. Enfin, nous terminerons cette étude avec le cas d’un disque
présentant également deux singularités.
Les trois situations sont représentées à la Figure 2.13.

Ω

ΓN
ΓD

Ω

ΓN

ΓD

Ω
ΓD

ΓN

Figure 2.13 – Représentation des géométries considérées pour les cas test numériques.
Gauche : cas test 1. Centre : cas test 2. Droite : cas test 3.

Les erreurs seront calculées selon les normes relatives L2 (2.10) et H1 (2.11), avec
une solution de référence éléments finis classique, en utilisant un maillage de référence
avec une taille de cellule h ≈ 0.0008.

Cas test 1 : une solution régulière. Considérons une situation où la solution
considérée ne présente pas de singularité, i.e. un cas où u ∈ H2(Ω). Pour cela, on
choisit une géométrie sans jonction entre la frontière Dirichlet et la frontière Neumann,
représentée à la Figure 2.13 (gauche). Le domaine est donné par la fonction level-set
ϕ(x, y) = ϕ1(x, y)× ϕ2(x, y) avec{

ϕ1(x, y) = −0.3912 + (x− 0.5)2 + (y − 0.5)2 ,

ϕ2(x, y) = −0.14312 + (x− 0.5)2 + (y − 0.5)2 .

Le terme source de (2.12) est donné par f = −1. Enfin, pour détecter le changement
de conditions de bord, la fonction level-set ψ est donnée par

ψ(x, y) = 0.252 − (x− 0.5)2 − (y − 0.5)2 .

Les erreurs en norme L2 et H1 sont données à la Figure 2.14. Pour les trois méthodes
considérées, on retrouve ici les ordres optimaux de convergence (les ordres attendus
sont de 2 pour l’erreur L2 et 1 pour l’erreur H1, puisque la solution ne présente pas de
singularité), pour les erreurs relatives L2 et H1. Les ordres de convergence sont indiqués
dans la Table 2.1.

Optimal ϕ-FEM Std FEM ϕ-FEM-2
Erreur L2 2 2.2 2.04 2.17
Erreur H1 1 1.31 1.32 1.31

Table 2.1 – Cas test 1. Ordres de convergence.
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Figure 2.14 – Cas test 1. Erreurs relatives L2 (gauche) et H1 (droite) en l’absence de
singularité.

Cas test 2 : singularité sur un carré tourné. Pour le second cas test, la géométrie
considérée sera un carré centré au point (0.5, 0.5) de côté 0.5 tourné d’un angle π/6. La
situation considérée est représentée à la Figure 2.13 (centre).
Pour décrire cette géométrie, nous utiliserons une première fonction level-set qui permettra
de sélectionner les cellules, définie par

ϕ1(x, y) = max |R(x0,y0,θ)(x, y)− 0.5| − 0.25 ,

où R(x0,y0,θ) est la matrice de rotation centrée en (x0, y0), d’angle θ.
Dans les calculs, on choisira une level-set plus lisse, donnée par

ϕ2(x, y) = −((xR − 0.5)− 0.25)× ((xR − 0.5) + 0.25)
× ((yR − 0.5)− 0.25)× ((yR − 0.5) + 0.25) ,

où
(xR, yR) = R(x0,y0,θ)(x, y) .

Les résultats des 3 méthodes sont représentés à la Figure 2.15 et les ordres de conver-
gence à la Table 2.2, où l’on remarque que les 3 méthodes convergent de manière optimale
en norme L2 comme en norme H1. On observe notamment un ordre de convergence plus
élevé pour les deux schémas ϕ-FEM que pour la méthode standard, en particulier en
norme L2.

Optimal ϕ-FEM Std FEM ϕ-FEM-2
Erreur L2 1 1.19 1.09 1.27
Erreur H1 0.5 0.56 0.56 0.56

Table 2.2 – Cas test 2. Ordres de convergence des méthodes.
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Figure 2.15 – Cas test 2. Erreurs relatives L2 et H1 en fonction de h.

Cas test 3 : singularités sur un disque. Nous allons maintenant considérer le cas
d’un disque centré en (0.5, 0.5) de rayon 0.3125, avec une frontière Γ divisée en ΓD et ΓN
comme représenté à la Figure 2.13 (droite), à l’aide de la level-set ψ(x, y) = x− 0.5.

Dans les résultats qui suivent, nous allons distinguer deux cas : le premier cas sera
obtenu lorsque l’interface entre la partie Neumann et la partie Dirichlet se produit sur
un nœud du maillage standard (analogue à la situation où elle se produit sur une face du
maillage ϕ-FEM). Cette situation correspondra à la dénomination matching. Le second
cas, moins artificiel sera le cas où cette jonction se produit sur une face du maillage
standard (considéré analogue à la situation où la jonction se fait à l’intérieur d’une cellule
du maillage ϕ-FEM), que l’on appellera not matching.

Les résultats obtenus dans le cas matching sont représentés à la Figure 2.16 ; dans
la situation not matching, à la Figure 2.17. Les ordres de convergence sont indiqués
dans la Table 2.3 pour les deux situations. Dans les deux situations, on observe sur
les résultats que les trois méthodes vérifient numériquement les ordres optimaux de
convergence : les erreurs L2 sont d’ordre h et les erreurs H1 d’ordre h1/2. En particulier,
on observe que les deux schémas ϕ-FEM donnent de meilleurs résultats en norme L2 que
la méthode standard. En ce qui concerne la norme H1, il est intéressant de noter que les
trois méthodes donnent des résultats très comparables.

Matching Optimal ϕ-FEM Standard FEM ϕ-FEM-2
Erreur L2 1 0.98 1.08 1.06
Erreur H1 0.5 0.5 0.55 0.5

Not Matching Optimal ϕ-FEM Standard FEM ϕ-FEM-2
Erreur L2 1 1.19 0.98 1.02
Erreur H1 0.5 0.49 0.51 0.49

Table 2.3 – Cas test 3. Ordres de convergence des méthodes, dans les deux situations
considérées.
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Figure 2.16 – Cas test 3. Erreur relative L2 (gauche) et erreur relative H1 (droite) en
fonction de h, pour une interface matching.
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Figure 2.17 – Cas test 3. Erreur relative L2 (gauche) et erreur relative H1 (droite) en
fonction de h, pour une interface not matching.

2.3 ϕ-FEM pour l’équation de la chaleur
Nous allons maintenant considérer une équation parabolique dépendant du temps,

l’équation de la chaleur avec des conditions de Dirichlet au bord, donnée par
∂tu−∆u = f , dans Ω× (0, T ) ,

u = 0 , sur Γ× (0, T ) ,
u|t=0 = u0 , sur Ω,

(2.14)

avec T > 0.
La première partie de cette section, sera consacrée à la présentation d’un schéma

ϕ-FEM pour la résolution de cette équation. Dans la seconde partie, nous proposerons
l’analyse théorique de ce schéma. Nous énoncerons alors des estimations d’erreur a priori
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pour les normes l2(H1) et l∞(L2). La troisième partie sera finalement consacrée à l’étude
numérique de ce schéma.
Les résultats présentés dans cette section ont été introduits dans [22, 27].

2.3.1 Construction du schéma

Soient Th et T Γ
h définis par (1.6) et (1.7) respectivement. Soit également FΓ

h donné
par (1.8). Soit un temps final T > 0. On introduit une partition uniforme de l’intervalle
[0, T ] en temps tn, n = 0, . . . , N tels que tn = n∆t et tN = T .

Pour construire le schéma ϕ-FEM, nous allons suivre l’idée présentée à la Section
1.2 pour le cas de l’équation (1.1). Cependant, cette fois, nous introduirons une nouvelle
inconnue w = w(x, t), au lieu de seulement w = w(x). Ainsi, nous pourrons poser u = ϕw
de sorte que les conditions de Dirichlet u = 0 soient automatiquement satisfaites au bord.

La discrétisation en temps de (2.14) sera faite en utilisant un schéma d’Euler implicite.
Les évaluations aux temps tn des fonctions seront notées fn(·) = f(·, tn). Ainsi, cela nous
permet d’obtenir la discrétisation en temps suivante : pour un = ϕwn donné, trouver
un+1 = ϕwn+1 qui vérifie

ϕwn+1 − ϕwn

∆t −∆(ϕwn+1) = fn+1 . (2.15)

Pour la discrétisation en espace, on considère l’espace éléments finis de degré k, V (k)
h

(défini par (1.9)), pour k > 1.
On suppose que les fonctions f et u0 sont définies sur Ωh. On rappelle que ϕh est

l’interpolation de ϕ dans V (l)
h , pour l > k. Le schéma ϕ-FEM pour résoudre (2.14) est

alors : trouver wn+1
h ∈ V (k)

h , n = 0, 1, . . . , N − 1 tel que pour tout vh ∈ V (k)
h

∫
Ωh

ϕhw
n+1
h

∆t ϕhvh +
∫

Ωh
∇(ϕhwn+1

h ) · ∇(ϕhvh)−
∫
∂Ωh

∂

∂n
(ϕhwn+1

h )ϕhvh

+σDh
∑
E∈FΓ

h

∫
E

[
∂(ϕhwn+1

h )
∂n

] [
∂(ϕhvh)
∂n

]
−σDh2 ∑

K∈T Γ
h

∫
K

(
ϕhw

n+1
h

∆t −∆(ϕhwn+1
h )

)
∆(ϕhvh)

=
∫

Ωh

(
unh
∆t + fn+1

)
ϕhvh − σDh2 ∑

K∈T Γ
h

∫
K

(
unh
∆t + fn+1

)
∆(ϕhvh) , (2.16)

où unh = ϕhw
n
h pour n > 1 et u0

h ∈ V
(k)
h est l’interpolation de u0.

Dans (2.16), on retrouve les termes de stabilisation introduits précédemment : la
pénalisation fantôme (la somme sur les facettes de FΓ

h ) comme introduite dans [12], et la
stabilisation d’ordre 2 (les termes multipliés par σDh2) qui renforce (2.15) sur les cellules
de T Γ

h .
Remarque 2.11. Le schéma peut être adapté sans difficulté au cas de conditions de Dirichlet
non homogènes u = uD sur Γ× (0, T ). Il suffit alors de considérer unh = ϕhw

n
h + Ihug(·, tn)

avec ug un prolongement de uD de Γ à Ωh et Ih un interpolant sur V (k)
h , comme pour le

schéma (1.10). Effectuer les modifications appropriées au schéma (2.16) (i.e. remplacer
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ϕhw
n+1
h par ϕhwn+1

h + Ihug(·, tn+1)) introduit alors des termes supplémentaires qui sont
tous ajoutés au second membre.

2.3.2 Analyse théorique

Commençons par énoncer le théorème de convergence :

Théorème 2.3 (cf. [27, Théorème 1]). Supposons que Ω ⊂ Ωh, l ≥ k, f ∈ H1(0, T ;Hk−1(Ωh))
et u ∈ H2(0, T ;Hk−1(Ω)) est la solution exacte (2.14). De plus, on suppose que un(·) =
u(·, tn) et wnh sont les solutions de (2.16) pour n = 1, . . . , N . Enfin, on suppose que les
Hypothèses 2.1.1-2.1.2, sont vérifiées. Alors, pour σD suffisamment grand, il existe c > 0
dépendant seulement de la régularité de Th et des constantes des Hypothèses 2.1.1-2.1.2
et C > 0 dépendant en plus de T , telles que si ∆t > ch2 alors

(
N∑
n=0

∆t|un − ϕhwnh |2H1(Ω)

) 1
2

6 C‖u0 − u0
h‖L2(Ωh)

+ C(hk + ∆t)
(
‖u‖H2(0,T ;Hk−1(Ω)) + ‖f‖H1(0,T ;Hk−1(Ωh))

)
et

max
16n6N

‖un − ϕhwnh‖L2(Ω) 6 C‖u0 − u0
h‖L2(Ωh)

+ C(hk+ 1
2 + ∆t)

(
‖u‖H2(0,T ;Hk−1(Ω)) + ‖f‖H1(0,T ;Hk−1(Ωh))

)
.

Remarque 2.12. Si k = 1, les normes majorantes des estimations précédentes peuvent être
remplacées par la norme de f sur H1(0, T ;L2(Ωh)). En effet, puisque Ω ⊂ Ωh, l’hypothèse
sur f implique que u ∈ H2(0, T ;L2(Ω)) ∩ H1(0, T ;H2(Ω)), c.f [33, Théorèmes 5 et 6,
Chapitre 7.1]. Cependant, imposer cette régularité de u sur Ω ne suffit pas à contrôler
l’extension de f sur Ωh \ Ω, ainsi il est nécessaire d’imposer la régularité sur Ωh, à la
différence des estimations a priori classiques des méthodes éléments finis standards (c.f.
par exemple [85]).

Avant de démontrer le Théorème 2.3, il est nécessaire de rappeler plusieurs résultats
de [28] pour résoudre (1.1).

Lemme 2.6 (cf. [28, Lemme 3.7]). On considère la forme bilinéaire

ah(u, v) =
∫

Ωh
∇u · ∇v −

∫
∂Ωh

∂u

∂n
v + σDh

∑
E∈FΓ

h

∫
E

[
∂u

∂n

] [
∂v

∂n

]
+

∑
K∈T Γ

h

σDh
2
∫
K

∆u∆v.

Pour σD assez grand, il existe une constante α > 0 indépendante de h telle que

ah(ϕhvh, ϕhvh) > α|ϕhvh|2H1(Ωh), ∀vh ∈ V
(k)
h .
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Lemme 2.7 (cf. [28, Théorème 2.3]). Pour toute fonction f ∈ Hk−1(Ωh), soit wh ∈ V (k)
h

la solution de

ah(ϕhwh, ϕhvh) =
∫

Ωh
fϕhvh − σDh2 ∑

K∈T Γ
h

∫
K
f∆(ϕhvh)

et soit u ∈ Hk+1(Ω) la solution de

−∆u = f dans Ω, u = 0 sur Γ

étendue à ũ ∈ Hk+1(Ωh) telle que u = ũ sur Ω et

‖ũ‖Hk+1(Ωh) 6 C‖u‖Hk+1(Ω) 6 C‖f‖Hk−1(Ωh).

Pour σD assez grand, il existe une constante C > 0 indépendante de h telle que

|ũ− ϕhwh|H1(Ωh) 6 Chk‖f‖Hk−1(Ωh) et ‖ũ− ϕhwh‖L2(Ωh) 6 Chk+ 1
2 ‖f‖Hk−1(Ωh).

Il est également nécessaire d’introduire le résultat suivant :

Lemme 2.8. Pour tout vh ∈ V
(k)
h , il existe une constante CP > 0 telle que

‖ϕhvh‖L2(Ωh) 6 CP |ϕhvh|H1(Ωh).

Preuve. Soit Ω̃h = {ϕh < 0}. En utilisant l’inégalité de Poincaré,

‖ϕhvh‖L2(Ω̃h) 6 Cdiam(Ω̃h)|ϕhvh|H1(Ω̃h),

et diam(Ω̃h) 6 diam(O).
De plus, par [28, Lemme 3.4],

‖ϕhvh‖L2(Ωh\Ω̃h) 6 ‖ϕhvh‖L2(ΩΓ
h

) 6 Ch|ϕhvh|H1(ΩΓ
h

),

où ΩΓ
h est le domaine occupé par T Γ

h (définis par (1.7)).
En notant Ω ⊂ Ω̃h ∪ ΩΓ

h, on obtient le résultat désiré.

Preuve du Théorème 2.3. Il existe une extension ũ ∈ H2(0, T ;Hk−1(Ωh)), de u à Ωh,
telle que

‖ũ‖H2(0,T ;Hk−1(Ωh)) 6 C‖u‖H2(0,T ;Hk−1(Ω)). (2.17)

Soit wnh la solution obtenue par le schéma ϕ-FEM (2.16), qui peut être réécrit sous la
forme∫

Ωh
ϕh
wn+1
h − wnh

∆t ϕhvh + ah(ϕhwn+1
h , ϕhvh)−

∑
K∈T Γ

h

σDh
2
∫
K
ϕh
wn+1
h − wnh

∆t ∆(ϕhvh)

=
∫

Ωh
fn+1ϕhvh −

∑
K∈T Γ

h

σDh
2
∫
K
fn+1∆(ϕhvh) (2.18)
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pour n > 1 où ϕhw0
h sera remplacé par u0

h pour n = 0.
À chaque temps t ∈ [0, T ], on introduit w̃h(·, t) = w̃h ∈ V

(k)
h , comme dans le Lemme

2.7, où f est remplacé par f − ∂tũ évalué à chaque temps t :

ah(ϕhw̃h, ϕhvh) =
∫

Ωh
(f − ∂tũ)ϕhvh − σDh2 ∑

K∈T Γ
h

∫
K

(f − ∂tũ)∆(ϕhvh). (2.19)

Soient w̃nh = w̃h(tn) et enh := ϕh(wnh − w̃nh) pour n > 1 avec e0
h := u0

h − ϕhw̃0
h.

On considère la différence entre (2.18) et (2.19) au temps tn+1, et on obtient

∫
Ωh

en+1
h − enh

∆t ϕhvh + ah(en+1
h , ϕhvh)−

∑
K∈T Γ

h

σDh
2
∫
K

en+1
h − enh

∆t ∆(ϕhvh)

=
∫

Ωh

(
∂tũ

n+1 − ϕh
w̃n+1
h − w̃nh

∆t

)
ϕhvh

−
∑
K∈T Γ

h

σDh
2
∫
K

(
∂tũ

n+1 − ϕh
w̃n+1
h − w̃nh

∆t

)
∆(ϕhvh).

En prenant vh = wn+1
h − w̃n+1

h , i.e. ϕhvh = en+1
h , et en combinant l’égalité

‖en+1
h ‖2L2(Ωh) − (enh, en+1

h )L2(Ωh) =
‖en+1
h ‖2L2(Ωh) − ‖e

n
h‖2L2(Ωh) + ‖en+1

h − enh‖2L2(Ωh)
2 ,

et les estimations des termes du second membre (avec les inégalités de Cauchy-Schwarz
et inverse : ‖∆en+1

h ‖L2(T ) 6 Ch−2‖en+1
h ‖L2(T )), on obtient

‖en+1
h ‖2L2(Ωh) − ‖e

n
h‖2L2(Ωh) + ‖en+1

h − enh‖2L2(Ωh)
2∆t +

(I)︷ ︸︸ ︷
ah(en+1

h , en+1
h )

−

(II)︷ ︸︸ ︷
σDh

2
∫

ΩΓ
h

en+1
h − enh

∆t ∆en+1
h 6 C

∥∥∥∥∥∂tũn+1 − ϕh
w̃n+1
h − w̃nh

∆t

∥∥∥∥∥
L2(Ωh)

‖en+1
h ‖L2(Ωh)︸ ︷︷ ︸

(III)

.

(2.20)

D’après le lemme de coercivité 2.6, on peut minorer (I) par α|en+1
h |2H1(Ωh). En utilisant

l’inégalité de Young (pour ε > 0) et l’inégalité inverse ‖∆en+1
h ‖L2(T ) 6 CIh

−1|en+1
h |H1(T ),

(I)− (II) > α|en+1
h |2H1(Ωh) −

σDh
2

2ε(∆t)2 ‖e
n+1
h − enh‖2L2(ΩΓ

h
) −

εσDC
2
I

2 |en+1
h |2H1(ΩΓ

h
)

>
3
4α|e

n+1
h |2H1(Ωh) −

1
2∆t‖e

n+1
h − enh‖2L2(ΩΓ

h
), (2.21)
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où ε est choisi tel que εσDC2
I /2 = α/4 et où l’on suppose que σDh2/(ε∆t) 6 1. Cela nous

permet de contrôler le terme négatif de (2.21) avec le terme similaire positif de (2.20).
On obtient alors la contrainte ∆t > ch2 où c = σD/ε.

On considère maintenant le terme (III) de (2.20). Par inégalité triangulaire,∥∥∥∥∥∂tũn+1 − ϕh
w̃n+1
h − w̃nh

∆t

∥∥∥∥∥
L2(Ωh)

6

∥∥∥∥∥∂tũn+1 − ũn+1 − ũn

∆t

∥∥∥∥∥
L2(Ωh)

+
∥∥∥∥∥ ũn+1 − ũn

∆t − ϕh
w̃n+1
h − w̃nh

∆t

∥∥∥∥∥
L2(Ωh)

. (2.22)

Par le théorème de Taylor avec reste intégral,

ũn(·) = ũn+1(·)−∆t∂tũn+1(·)−
∫ tn+1

tn
∂ttũ(t, ·)(tn − t) d t .

Ainsi, ∥∥∥∥∥∂tũn+1 − ũn+1 − ũn

∆t

∥∥∥∥∥
L2(Ωh)

= 1
∆t

∥∥∥∥∫ tn+1

tn
∂ttũ(t, ·)(tn − t) d t

∥∥∥∥
L2(Ωh)

6
√

∆t‖∂ttũ‖L2(tn,tn+1;L2(Ωh)) .

Dériver −∆u = f − ∂tu et (2.19) en temps, entraîne alors, par le Lemme 2.7,

‖∂t(ũ(t)− ϕhw̃h)(t)‖L2(Ωh) 6 Chk+ 1
2 ‖(∂tf − ∂ttũ)(t)‖Hk−1(Ωh).

Alors, pour le second terme de (2.22), on obtient finalement∥∥∥∥∥ ũn+1 − ũn

∆t − ϕh
w̃n+1
h − w̃nh

∆t

∥∥∥∥∥
L2(Ωh)

= 1
∆t

∥∥∥∥∫ tn+1

tn
∂t(ũ(t, ·)− ϕhw̃h(t, ·)) dt

∥∥∥∥
L2(Ωh)

6
Chk+ 1

2
√

∆t
‖∂tf − ∂ttũ‖L2(tn,tn+1;Hk−1(Ωh)).

En utilisant toutes les estimations et en appliquant l’inégalité de Young avec δ > 0 ainsi
que l’inégalité de Poincaré du Lemme 2.8,

(III) 6 C

δ

(
∆t‖∂ttũ‖2L2(tn,tn+1;L2(Ωh)) + h2k+1

∆t ‖∂tf − ∂ttũ‖
2
L2(tn,tn+1;Hk−1(Ωh))

)

+ δC2
P

2 |e
n+1
h |2H1(Ωh). (2.23)

En remplaçant (2.21) et (2.23) dans (2.20) et en prenant δ tel que δC2
P = α/2, on obtient

‖en+1
h ‖2L2(Ωh) − ‖e

n
h‖2L2(Ωh)

2∆t + α

2 |e
n+1
h |2H1(Ωh)

6 C

(
∆t‖∂ttũ‖2L2(tn,tn+1;L2(Ωh)) + h2k+1

∆t ‖∂tf − ∂ttũ‖
2
L2(tn,tn+1;Hk−1(Ωh))

)
,
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ce qui, multiplié par 2∆t et sommé sur l’ensemble des n = 0, . . . , N − 1, donne

‖eNh ‖2L2(Ωh) + α∆t
N∑
n=1
|enh|2H1(Ωh)

6 ‖e0
h‖2L2(Ωh) + C(∆t2‖∂ttũ‖2L2(0,T ;L2(Ωh)) + h2k+1‖∂tf − ∂ttũ‖2L2(0,T ;Hk−1(Ωh))).

Alors, en observant que la somme peut être arrêtée pour tout n 6 N ,

max
n=1,...,N

‖enh‖L2(Ωh) +
(

∆t
N∑
n=1
|enh|2H1(Ωh)

) 1
2

6 C‖e0
h‖L2(Ωh) + C

(
∆t‖∂ttũ‖L2(0,T ;L2(Ωh)) + hk+ 1

2 ‖∂tf − ∂ttũ‖L2(0,T ;Hk−1(Ωh))

)
.

Le Lemme 2.7 appliqué à −∆u = f − ∂tu dans Ω au temps tn donne alors

max
n=0,...,N

‖ũn − ϕhw̃nh‖L2(Ωh) 6 Chk+1/2‖f − ∂tũ‖C([0,T ],Hk−1(Ωh)),(
∆t

N∑
n=1
|ũn − ϕhw̃nh |2H1(Ωh)

) 1
2

6 Chk‖f − ∂tũ‖C([0,T ],Hk−1(Ωh)).

En particulier,

‖e0
h‖L2(Ωh) 6 ‖u0 − u0

h‖L2(Ωh) + ‖u0 − ϕhw̃0
h‖L2(Ωh)

6 ‖u0 − u0
h‖L2(Ωh) + Chk+1/2‖f − ∂tũ‖C([0,T ],Hk−1(Ωh)).

Cela combiné avec la régularité de f et de ũ, cf. (2.17), ainsi qu’avec la majoration
‖ · ‖C([0,T ],·) 6 C‖ · ‖H1(0,T ;·) (où C dépend de T ) nous donne finalement le résultat
annoncé.

2.3.3 Résultats numériques

Dans cette partie, nous allons valider numériquement les performances de notre
méthode sur deux cas test 4. Les implémentations sont faites avec FEniCS [2]. Les codes
python des simulations sont disponibles dans le repository Github

https://github.com/PhiFEM/publication_Heat-Equation_fenics

Dans les simulations suivantes, si la convergence espérée est d’ordre C1h
p + C2∆tm,

nous fixerons ∆t = hp/m de sorte qu’il soit suffisant d’observer si l’erreur est d’ordre hp.
Remarque 2.13 (Normes utilisées pendant les simulations). Pour illustrer la convergence
des méthodes, nous considérerons les normes suivantes :

‖uh − uref‖2l2(0,T,H1
0 (Ωref))

‖uref‖2l2(0,T,H1
0 (Ωref))

≈
∑N
n=0 ∆t

∫
Ωref
|∇uh(., tn)−∇uref(., tn)|2dx∑N

n=0 ∆t
∫

Ωref
|∇uref(., tn)|2dx

,

4. Pour le premier cas test, nous utiliserons le solveur linéaire par défaut de FEniCS. Pour le second,
le solveur linéaire GMRES sera utilisé, combiné au préconditionneur hypre_amg.

https://github.com/PhiFEM/publication_Heat-Equation_fenics


2.3. ϕ-FEM POUR L’ÉQUATION DE LA CHALEUR 49

et
‖uh − uref‖2l∞(0,T,L2(Ωref))
‖uref‖2l∞(0,T,L2(Ωref))

≈
maxn=0,...,N

∫
Ωref

(uh(., tn)− uref(., tn))2dx
maxn=0,...,N

∫
Ωref

(uref(., tn))2dx ,

où l’on note uh une approximation de la projection orthogonale L2 de la solution calculée,
sur un maillage de référence Tref du domaine Ωref et uref la solution de référence.

Ω Γ

Figure 2.18 – Cas test 1. Gauche : domaine considéré. Centre : maillage conforme
pour FEM standard. Droite : maillage cartésien uniforme pour ϕ-FEM (Th).

Premier cas test : solution manufacturée. Pour ce premier cas test, nous
considérons un domaine simple : le cercle centré en (0, 0), de rayon 1, comme représenté
à la Figure 2.18. La fonction level-set ϕ est donnée en utilisant l’équation d’un cercle, i.e.
ϕ(x, y) = −1 + x2 + y2. Son approximation ϕh est l’interpolation de ϕ avec des éléments
finis Pk+1, hormis pour les résultats présentés à la Figure. 2.24 (droite).

La solution manufacturée uref = cos
(

1
2π(x2 + y2)

)
exp(x) sin(t) est telle que uref

vérifie uref(t = 0) = u0
ref = 0 et uref = 0 sur Γ× (0, T ). Ici, le maillage de référence sera

le maillage considéré à chaque résolution ϕ-FEM et FEM standard (i.e. il n’y a pas
d’interpolation sur un maillage plus fin pour le calcul de l’erreur).

-1.3e-15 3.2e-01 6.5e-01 9.7e-01 1.3e+00
  

-4.3e-16 3.2e-01 6.5e-01 9.7e-01 1.3e+00
   

-1.9e-01 1.8e-01 5.5e-01 9.2e-01 1.3e+00
    

-7.8e-04 3.2e-01 6.5e-01 9.7e-01 1.3e+00
     

Figure 2.19 – Cas test 1. Représentations des solutions au temps final. De gauche à
droite : solution de référence FEM standard, solution FEM standard, solution ϕ-FEM,
projection de la solution ϕ-FEM sur le maillage de référence.
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On représente à la Figure 2.19 uref calculée sur un maillage fin, au temps final, ainsi
qu’une solution éléments finis et une solution ϕ-FEM toutes deux au temps final. On
représente également la projection de la solution ϕ-FEM sur un maillage fin conforme.
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Figure 2.20 – Cas test 1. Erreurs relatives l2(0, T ;H1(Ω)) en fonction de h pour des
éléments finis P1 et ∆t = h (gauche) et P2 avec ∆t = h2 (droite).
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Figure 2.21 – Cas test 1. Erreurs relatives l∞(0, T ;L2(Ω)) en fonction de h pour des
éléments finis P1 et ∆t = h2 (gauche) et P2 avec ∆t = h3 (droite).

On représente l’erreur en norme l2(H1) à la Figure 2.20 et en norme l∞(L2) sur la
Figure 2.21, dans les deux cas pour des éléments finis P1 et P2 (k = 1 et k = 2).
Les résultats numériques correspondent bien à l’ordre de convergence théorique annoncé
dans le Théorème 2.3 et se comportent même mieux puisque l’on observe des convergences
d’ordre 2 et 3 en norme l∞(L2) au lieu de 1.5 et 2.5 respectivement. Il est intéressant de
remarquer que la contrainte théorique ∆t > ch2 n’est pas satisfaite pour les éléments finis
P2, ce qui n’affecte pas la convergence numérique. On représente également les erreurs
en normes l2(H1) et l∞(L2) en fonction du temps de calcul (ici, la somme du temps



2.3. ϕ-FEM POUR L’ÉQUATION DE LA CHALEUR 51

d’assemblage de la matrice éléments finis et du temps de résolution du système linéaire à
chaque pas de temps, sans prendre en compte les temps de construction des maillages)
à la Figure 2.22. On observe alors que ϕ-FEM est significativement plus rapide qu’une
méthode éléments finis classique pour obtenir une solution à seuil d’erreur fixé.
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Figure 2.22 – Cas test 1. Erreurs relatives l2(0, T ;H1(Ω)) avec ∆t = h (gauche) et
l∞(0, T ;L2(Ω)) avec ∆t = h2 (droite) en fonction du temps de calcul.

La Figure 2.23 (gauche), représente l’erreur l2(H1) et la Figure 2.23 (droite) l’erreur
l∞(L2), dans les deux cas en fonction du paramètre de stabilisation σD. Cela permet
d’illustrer l’influence de σD sur la stabilité de l’erreur, ainsi que de valider le choix de la
valeur σD = 1 dans les autres simulations.

10−1 100 101 102 103 104

σ

10−2

10−1

100

‖u
re

f
−

u
h
‖ l2

(H
1
)

‖u
re

f
‖ l2

(H
1
)

h ≈ 0.53

h ≈ 0.26

h ≈ 0.13

h ≈ 0.06

h ≈ 0.03

10−1 100 101 102 103 104

σ

10−4

10−3

10−2

10−1

100

m
a
x
t i
‖u

re
f
(t
i)
−

u
h
(t
i)
‖ 0
,Ω

m
a
x
t i
‖u

re
f
(t
i)
‖ 0
,Ω

h ≈ 0.53

h ≈ 0.26

h ≈ 0.13

h ≈ 0.06

h ≈ 0.03

Figure 2.23 – Cas test 1. Gauche : Erreurs relatives l2(0, T ;H1(Ω)) en fonction de σD
différentes tailles de maillage h, avec ∆t = h. Droite : Erreurs relatives l∞(0, T ;L2(Ω))
en fonction de σD, avec ∆t = h2.

Enfin, la Figure 2.24, permet de justifier le choix du degré d’interpolation de ϕ puisque
dans l’analyse théorique, Pk est suffisant, mais on observe que l’erreur de la méthode est
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plus faible pour l = 2. Ici, puisque l’interpolation est exacte à partir de l = 2, il n’est pas
nécessaire de comparer les résultats avec un plus haut degré d’interpolation de ϕ.
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Figure 2.24 – Cas test 1. Erreurs relatives l2(0, T ;H1(Ω)) en fonction de h pour
différentes valeurs de l, ∆t = h (gauche) et erreurs relatives l∞(0, T ;L2(Ω)) avec ∆t = h2

(droite).

Second cas test : terme source donné. On considère maintenant un cas test plus
réaliste où l’on applique un terme source connu et cherche à déterminer la distribution
de la chaleur dans le domaine considéré. Plus précisément, on impose u = 0 sur Γ ×
(0, T ). La condition initiale est donnée par u0 = 0 dans Ω on définit un terme source
f(x, y, z, t) = exp

(
− (x−µ1)2+(y−µ2)2+(z−µ3)2

2σ2
0

)
pour tout (x, y, z, t) ∈ Ω × (0, T ), avec

(µ1, µ2, µ3, σ0) = (0.2, 0.3,−0.1, 0.3). Le temps final est fixé à T = 1.
De plus, pour ce cas test le domaine considéré sera un domaine 3D plus complexe, issu
de [13], donné par

ϕ(x, y, z) = x2 + y2 + z2 − r2
0 −A

11∑
k=0

exp
(
−(x− xk)2 + (y − yk)2 + (z − zk)2

σ2
0

)
,

où

(xk, yk, zk) = r0√
5

(
2 cos

(2kπ
5

)
, 2 sin

(2kπ
5

)
, 1
)
, 0 6 k 6 4 ,

(xk, yk, zk) = r0√
5

(
2 cos

((2(k − 5)− 1)π
5

)
, 2 sin

((2(k − 5)− 1)π
5

)
,−1

)
, 5 6 k 6 9 ,

(xk, yk, zk) = (0, 0, r0) , k = 10 ,
(xk, yk, zk) = (0, 0,−r0) , k = 11 ,

avec r0 = 0.6, σ = 0.3 et A = 1.5.
Le domaine et des exemples de maillages (Standard-FEM et ϕ-FEM) construits sont

représentés à la Figure 2.25.
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Figure 2.25 – Cas test 2. Gauche : domaine considéré. Centre : maillage conforme
standard FEM. Droite : maillage uniforme cartésien Th pour ϕ-FEM.

Ici, on notera uref la solution obtenue par Standard-FEM sur un maillage conforme
très fin Tref du domaine de référence Ωref. En particulier, on introduit une partition de
l’intervalle [0, T ] en pas de temps 0 = tref

0 < tref
1 < · · · < tref

M = T avec tref
n = n∆tref

et ∆tref = h
p/m
ref , où href est la taille de cellules de Tref. Ainsi, dans les simulations,

chaque discrétisation est construite de sorte que {tn}n=0,...,N soit un sous-ensemble de{
tref
n

}
n=0,...,M

.
On représente à la Figure 2.27 uref, au temps final, ainsi qu’une solution éléments finis et
une solution ϕ-FEM toutes deux au temps final. On représente également la projection
de la solution ϕ-FEM sur un maillage fin.

Pour la Figure 2.26, on considère des éléments finis P1 (k = 1), et ϕh est l’interpolation
P2 de ϕ (l = 2). On compare les erreurs relatives en normes l2(H1), l∞(L2) entre les
solutions du schéma ϕ-FEM (2.16) et les solutions avec FEM classique. Dans ce cas
également, les résultats numériques correspondent aux résultats théoriques énoncés dans
le Théorème 2.3, c’est-à-dire, l’ordre 1 pour la norme l2(H1) et l’ordre 2 pour la norme
l∞(L2).

2.4 Résolution de problèmes d’élasticité linéaire

Dans cette section, nous allons introduire plusieurs schémas ϕ-FEM permettant de
résoudre différents problèmes d’élasticité linéaire. Dans un premier temps, nous
considérerons un problème générique d’élasticité linéaire avec des conditions de Dirichlet
ou mixtes de Dirichlet/Neumann. Ensuite, nous verrons comment résoudre un problème
d’élasticité impliquant plusieurs matériaux, dans le cas de problèmes avec interface. Nous
traiterons également le cas de matériaux élastiques contenant une fracture. Ces résultats
ont fait l’objet de la publication [22]. Enfin, nous proposerons de nouveaux résultats
numériques illustrant l’intérêt de notre approche dans le cas de problèmes plus réalistes
pouvant notamment présenter des singularités.
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Figure 2.26 – Cas test 2. Erreurs relatives l2(0, T ;H1(Ω)) en fonction de h avec ∆t = h
(gauche) et erreurs relatives l∞(0, T ;L2(Ω)) en fonction de h, avec ∆t = h2 (droite).
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Figure 2.27 – Cas test 2. Représentation des solutions du cas test 2 au temps final.
De gauche à Droite : solution de référence, solution FEM standard, solution ϕ-FEM et
solution ϕ projetée sur le maillage de référence.

2.4.1 L’élasticité linéaire avec conditions Dirichlet et mixtes
Dirichlet/Neumann

Considérons premièrement le cas de l’élasticité linéaire statique pour des matériaux
homogènes et isotropes. Le problème consiste à trouver un déplacement u ∈ Rd pour un
déplacement donné ug sur ΓD (conditions de Dirichlet), une traction g sur ΓN (conditions
de Neumann) et une force interne f dans Ω, vérifiant


divσ(u) + f = 0 , dans Ω ,

u = ug , sur ΓD ,
σ(u) · n = g , sur ΓN ,

(2.24)

où le tenseur des contraintes σ(u) est donné par

σ(u) = 2µε(u) + λ(divu)I,
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avec ε(u) = 1
2(∇u+∇uT ) le tenseur de déformation et les paramètres de Lamé λ et µ

dépendant du module de Young E et du coefficient de Poisson ν,

µ = E

2(1 + ν) et λ = Eν

(1 + ν)(1− 2ν) . (2.25)

Rappelons premièrement la formulation faible associée à l’équation (2.24). Pour cela,
on suit l’approche classique : on multiplie l’équation par une fonction test v et on intègre
par parties sur Ω. On cherche alors le champ de vecteur u dans Ω vérifiant u|ΓD = ug et∫

Ω
σ(u) : ∇v =

∫
Ω
f · v +

∫
ΓN
g · v, ∀v dans Ω tel que v|ΓD = 0.

Cette formulation sera utilisée pour construire les schémas éléments finis classiques
utilisés dans les simulations numériques de cette section.

Une fois de plus, on considère le cas où Ω est inscrit dans une boite O, couverte par
le maillage T Oh . De plus, on construit les maillages Th (c.f. (1.6)) et T Γ

h (c.f. (1.7)). Enfin,
on suppose que l’on connait les différentes fonctions sur Ωh plutôt que seulement sur Ω.

On peut alors, comme pour les précédents schémas ϕ-FEM étendre la formulation
(2.24) à Ωh. Alors, multiplier par une fonction test v et intégrer par parties sur Ωh, donne
la formulation : trouver u dans Ωh tel que∫

Ωh
σ(u) : ∇v −

∫
∂Ωh

σ(u)n · v =
∫

Ωh
f · v, ∀v dans Ωh .

Conditions de Dirichlet

On considère premièrement le cas de conditions de bord de Dirichlet pures, c’est-à-
dire lorsque Γ = ΓD. Comme pour le problème de Poisson, nous allons proposer deux
versions du schéma : la version directe (u = ϕw + ug dans tout Ωh) et la version duale
(u = ϕp+ ug uniquement sur les cellules « proches » de Γ).

Introduisons premièrement les espaces éléments finis adaptés aux problèmes d’élasticité
dans lesquels les variables seront discrétisées. Pour k > 1, soit

Vh :=
{
vh : Ωh → Rd : vh|T ∈ Pk(T )d ∀T ∈ Th, vh continue sur Ωh

}
, (2.26)

l’espace de discrétisation des variables « principales ».
Comme nous l’avons fait dans le cas du schéma dual pour Poisson-Dirichlet, il est

nécessaire d’introduire la version locale de cet espace, défini pour tout maillage Mh

couvrant un domaine Mh et pour l > 0, par

Qk
h(Mh) := {qh : Mh → Rd : qh|T ∈ Pk(T )d ∀T ∈Mh, qh

continue sur Mh si k > 0}. (2.27)

En particulier, nous aurons besoin de Qk
h(ΩΓ

h) sur le sous-maillage T Γ
h pour la version

duale.
Maintenant que les espaces éléments finis sont définis, on peut alors introduire les

deux schémas ϕ-FEM permettant de résoudre (2.24) avec des conditions de Dirichlet
pures :



56 CHAPITRE 2. LES NOUVEAUX SCHÉMAS ϕ-FEM

• ϕ-FEM direct Dirichlet : le schéma direct est donné par, trouver wh ∈ Vh tel
que
∫

Ωh
σ(ϕhwh) : ∇(ϕhzh)−

∫
∂Ωh

σ(ϕhwh)n · ϕhzh +Gh(ϕhwh, ϕhzh)

+ J lhsh (ϕhwh, ϕhzh) =
∫

Ωh
f · ϕhzh −

∫
Ωh
σ(ugh) : ∇(ϕhzh)

+
∫
∂Ωh

σ(ugh)n · ϕhzh,+Jrhsh (ϕhzh), ∀zh ∈ Vh

avec uh = ugh + ϕhwh. Ici, ϕh et ugh sont les approximations éléments finis de ϕ et
ug sur Ωh. De plus, Gh, J lhsh et Jrhsh sont les termes de stabilisation définis par

Gh(u,v) := σDh
∑
E∈FΓ

h

∫
E

[σ(u)n] · [σ(v)n] , (2.28)

J lhsh (u,v) := σDh
2 ∑
T∈T Γ

h

∫
T

divσ(u) · divσ(v) , (2.29)

Jrhsh (v) := −σDh2 ∑
T∈T Γ

h

∫
T
f · divσ(v) . (2.30)

Ici, Gh est une adaptation aux équations d’élasticité de la « ghost penalty » in-
troduite à l’équation (1.11) pour le problème de Poisson-Dirichlet, avec σD > 0.
Cependant, dans ce cas, on choisit de pénaliser le saut des forces élastiques internes
(en suivant l’approche [21]), et donc de contrôler les combinaisons appropriées des
dérivées plutôt que les dérivées normales directement. Une représentation des faces
sur lesquelles cette stabilisation est appliquée est donnée à la Figure 1.4, puisque
l’ensemble FΓ

h est défini par (1.8). Les stabilisations d’ordre 2 sont introduites de
sorte à imposer l’équation (2.24) aux moindres carrés sur les cellules coupées par
la frontière.

• ϕ-FEM dual Dirichlet : le schéma dual est lui défini par, trouver uh ∈ Vh,
ph ∈ Qk

h(ΩΓ
h) tels que

∫
Ωh
σ(uh) : ∇vh −

∫
∂Ωh

σ(uh)n · vh + γ

h2

∫
ΩΓ
h

(uh −
1
h
ϕhph) · (vh −

1
h
ϕhqh)

+Gh(uh,vh) + J lhsh (uh,vh) =
∫

Ωh
f · vh

+ γ

h2

∫
ΩΓ
h

ugh · (vh −
1
h
ϕhqh) + Jrhsh (vh), ∀vh ∈ Vh, qh ∈ Qk

h(ΩΓ
h). (2.31)

Les termes de stabilisation Gh, J lhsh et Jrhsh sont définis respectivement par (2.28),
(2.29) et (2.30).
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Figure 2.28 – Cas test 1. (Conditions de Dirichlet). Erreur relative L2 (gauche), erreur
relative H1 (droite).
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Figure 2.29 – Cas test 1. (Conditions de Dirichlet). Temps de calcul (en secondes) en
fonction de l’erreur relative L2.

Cas test 1. Soit O le carré (0, 1)2 et soit T Oh un maillage uniforme de O. Soit Ω le
cercle de centre (0.5, 0.5) de rayon

√
2

4 , défini par la fonction level-set

ϕ(x, y) = −1
8 + (x− 0.5)2 + (y − 0.5)2 . (2.32)

Les paramètres d’élasticité seront fixés à E = 2 et ν = 0.3 et les paramètres de stabilisation
à γ = σD = 20.0. Des éléments finis P2 seront utilisés pour Vh et Qh, i.e. k = 2 dans
(2.26) et (2.27). Finalement, on considérera une solution manufacturée donnée par

u = uex := (sin(x) exp(y), sin(y) exp(x)) . (2.33)

Le second membre f de (2.24) est alors calculé analytiquement et les conditions de
bord ug sont données par ug = uex sur Γ. Afin d’éviter d’utiliser cette expression sur
l’ensemble de Ωh (schéma direct) ou sur ΩΓ

h (schéma dual), on perturbera légèrement
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cette condition de bord, et on imposera plutôt

ug = uex(1 + ϕ), dans Ωh ou dans ΩΓ
h.

Remarque 2.14. Les représentations des maillages Th et T Γ
h peuvent être trouvées à la

Figure 1.4. De plus, un maillage conforme pour une méthode éléments finis dans le cas
considéré ici est représenté à la Figure 1.1.

Nous allons dans un premier temps étudier la convergence de nos deux schémas ainsi
que celle de la méthode éléments finis classique. Pour cela, nous mesurons les erreurs L2

et H1, qui sont représentées à la Figure 2.28. On remarque que les deux schémas ϕ-FEM
atteignent l’ordre optimal espéré pour les deux normes : h2 pour la semi-norme H1 et
h3 pour la norme L2. De plus, les deux méthodes sont significativement meilleures que
l’approche Standard, qui est sous-optimale en norme L2.

L’efficacité de ϕ-FEM par rapport à Standard-FEM est également confirmée par la
Figure 2.29, où l’on représente le temps de calcul en fonction de l’erreur relative L2.
Les temps de calcul considérés ne prennent en compte que les temps d’assemblage des
matrices éléments finis et les temps de résolution des systèmes linéaires. Ainsi, pour une
erreur fixée, les résultats sont obtenus significativement plus rapidement avec ϕ-FEM
(direct comme dual), qu’avec Standard-FEM.
Remarque 2.15 (Temps de calcul). Il a été ici choisi de ne pas prendre en compte le temps
de génération des différents maillages puisque pour ce cas test, les simulations ont été
réalisées avec FEniCS qui ne permettait pas de sélectionner les cellules des sous-maillages
ϕ-FEM de manière optimale.

Conditions de bord mixtes

Considérons maintenant le cas plus complexe de conditions mixtes Dirichlet-Neumann
au bord sur Γ = ΓN ∪ ΓD où ΓD 6= ∅ et ΓN 6= ∅.

Comme dans le cas du problème de Poisson avec conditions mixtes, on considère
une fonction level-set ψ nous permettant de caractériser la partie Neumann et la partie
Dirichlet du bord Γ :

ΓD = Γ ∩ {ψ 6 0} et ΓN = Γ ∩ {ψ > 0} .

On peut à nouveau introduire les maillages Th et T Γ
h , cf. (1.6) et (1.7) (représentés

aux Figures 2.11 et 2.12). La level-set ψ nous permet alors de définir une nouvelle fois
les sous-maillages T ΓD

h et T ΓN
h cf. (2.13) que l’on rappelle :

T ΓD
h := {T ∈ T Γ

h : ψ 6 0 sur T} et T ΓN
h := {T ∈ T Γ

h : ψ > 0 sur T} .

On notera Ωh, ΩΓ
h , ΩΓD

h et ΩΓN
h les domaines occupés par les maillages Th, T Γ

h , T ΓD
h

et T ΓN
h . On rappelle comme dans le cas de l’équation (2.12), Section 2.2, que certaines

cellules de T Γ
h peuvent appartenir aux deux maillages T ΓD

h et T ΓN
h ou à aucun (comme

représenté à la Figure 2.11). Dans ces deux situations, ces cellules seront considérées
comme des cellules d’interface, pour lesquelles aucune condition de bord ne sera appliquée.
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Des exemples des maillages construits sont représentés aux Figures 2.11 et 2.12 pour
une jonction Neumann/Dirichlet censée intervenir pour x = 0.5, i.e. pour une level-set
ψ(x, y) = 0.5− x.

Les cellules intersectées par Γ appartiennent soit à la partie Dirichlet (et forment
donc T ΓD

h , et sont colorées en violet), ou à la partie Neumann (et forment T ΓN
h , cellules

colorées en rouge), ou à la partie d’interface et sont alors colorées en bleu.
On suppose une nouvelle fois que u, solution de (2.24) peut être étendue de Ω à Ωh

comme solution de la même équation. On introduit alors le schéma ϕ-FEM en combinant
la version duale ϕ-FEM Dirichlet (2.31) et l’adaptation au cas de l’élasticité du schéma
Poisson-Neumann proposé dans [23], rappelé en Section 1.2 (le schéma étant rappelé à
l’équation (1.19)).

Pour imposer les conditions de Dirichlet, on utilisera l’équation

u = ug + ϕpD, sur ΩΓD
h ,

où l’on suppose que ug est étendue de ΓD à ΩΓD
h .

Les conditions de Neumann seront imposées via l’introduction de deux variables
auxiliaires (comme détaillé en Sections 1.2 et 2.2). Introduisons premièrement une
variable tensorielle y sur ΩΓN

h , telle que y = −σ(u). Pour imposer yn = −g sur ΓN , on
rappelle que la normale extérieure unitaire n est donnée sur Γ par n = 1

|∇ϕ|∇ϕ. Ainsi,
les conditions de Neumann sont imposées en introduisant une seconde variable auxiliaire
(vectorielle), telle que y∇ϕ+ g|∇ϕ| = −pNϕ sur ΩΓN

h . Alors, on obtient les équations
suivantes :

y + σ(u) = 0, sur ΩΓN
h , (2.34a)

y∇ϕ+ pNϕ = −g|∇ϕ|, sur ΩΓN
h . (2.34b)

Il ne reste alors plus qu’à introduire les espaces éléments finis permettant de discrétiser
les différentes variables auxiliaires avant de construire le schéma. Une nouvelle fois, on
pose k > 1, et on considère l’espace Vh défini par (2.26) comme espace de discrétisation
pour l’approximation uh de u. Les variables ph,D et ph,N , approximations de pD et pN ,
seront choisies dans Qk−1

h (ΩΓN
h ) et Qk

h(ΩΓD
h ) respectivement (où Qk

h(Mh) est défini par
(2.27)).

Enfin, la variable y sera approchée par une variable yh ∈ Zh(ΩΓN
h ) où

Zh(Mh) := {zh : Mh → R(d×d) : zh|T ∈ Pk(T )(d×d) ∀T ∈Mh,

zh continue sur Mh} . (2.35)

Finalement, on obtient le schéma : trouver uh ∈ Vh, ph,D ∈ Qk
h(ΩΓD

h ), yh ∈ Zh(ΩΓN
h )

et ph,N ∈ Qk−1
h (ΩΓN

h ) tels que
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∫
Ωh
σ(uh) : ∇vh −

∫
∂Ωh\∂Ωh,N

σ(uh)n · vh +
∫
∂Ωh,N

yhn · vh

+ γu

∫
ΩΓN
h

(yh + σ(uh)) : (zh + σ(vh))

+ γp
h2

∫
ΩΓN
h

(
yh∇ϕh + 1

h
ph,Nϕh

)
·
(
zh∇ϕh + 1

h
qh,Nϕh

)
+ γ

h2

∫
ΩΓD
h

(uh −
1
h
ϕhph,D) · (vh −

1
h
ϕhqh,D) +Gh(uh,vh)

+ J lhs,Dh (uh,vh) + J lhs,Nh (yh, zh) =
∫

Ωh
f · vh

+ γ

h2

∫
ΩD
h

ugh · (vh −
1
h
ϕhqh,D)− γp

h2

∫
ΩΓN
h

g · |∇ϕh|(zh · ∇ϕh + 1
h
qh,Nϕh)

+ Jrhs,Dh (vh) + Jrhs,Nh (zh)
∀vh ∈ Vh, qh,D ∈ Qk

h(ΩΓD
h ), zh ∈ Zh(ΩΓN

h ), qh,N ∈ Qk−1
h (ΩΓN

h ) , (2.36)

où Gh est définie par :

Gh(u,v) := σDh
∑

E∈FΓD
h

∫
E

[σ(u)n] · [σ(v)n]

+ σNh
∑

E∈F
ΓNs
h

∫
E

[σ(u)n] · [σ(v)n] ,

avec FΓD
h l’ensemble des facettes de ΩΓD

h et FΓNs
h les facettes de (Th \ T Γ

h ) ∩ T ΓN
h (voir

Figures 2.11 et 2.12 pour des exemples de représentations graphiques). Les termes de
stabilisation J lhsh et Jrhsh sont eux adaptés de (2.29) et (2.30), séparés en termes agissant
sur uh sur les cellules de la partie Dirichlet (et d’interface) de T Γ

h , et les termes agissant
sur yh sur la partie Neumann :

J lhs,Dh (u,v) = σDh
2 ∑
T∈T Γ

h
\T ΓN
h

∫
T

divσ(u) · divσ(v) , (2.37)

Jrhs,Dh (v) = −σDh2 ∑
T∈T Γ

h
\T ΓN
h

∫
T
f · divσ(v) , (2.38)

J lhs,Nh (y, z) = γdiv

∫
ΩΓN
h

divy · div z , (2.39)

Jrhs,Nh (z) = γdiv

∫
ΩΓN
h

f · div z. (2.40)
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Ω
ΓD

u = ug

ΓN
σn = g

Figure 2.30 – Représentation de la géométrie considérée pour les cas test 1 (Γ = ΓD) et
2.

Figure 2.31 – Cas test 2. Maillages Standard-FEM. Gauche : changement de conditions
de bord conforme. Droite : changement de conditions de bord non-conforme.

Cas test 2. Nous allons maintenant présenter des résultats numériques pour la méthode
(2.36), que nous comparerons à la méthode standard FEM.
Remarque 2.16. Les ordres de convergence optimaux sont ici 3 pour la norme L2 et 2
pour la semi-norme H1 puisque l’on se place dans la situation d’éléments finis P2, en
considérant une solution manufacturée au moins H2, et donc très régulière.

Pour ce cas test, nous considérerons la géométrie définie par (2.32) (i.e. le cercle centré
en (0.5, 0.5), de rayon

√
2/4), les mêmes paramètres d’élasticité ainsi que la même solution

manufacturée (2.33) que pour le premier cas test de cette section. Des conditions de
Dirichlet seront imposées sur Γ ∩ {x > 0.5} et des conditions de Neumann pour x < 0.5,
c.f. Figure 2.30, i.e. ψ(x, y) = 0.5− x. Les conditions de bord ug et g sont calculées à
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partir de la solution manufacturée uex. Pour ϕ-FEM, elles sont étendues de Γ à ΩΓD
h et

ΩΓN
h respectivement. Elles sont définies par :ug = uex(1 + ϕ), sur ΩΓ

h ∩ {x > 0.5} ,
g = σ(uex) · ∇ϕ‖∇ϕ‖ + uexϕ, sur ΩΓ

h ∩ {x < 0.5} .

Les expressions sont ici une nouvelle fois perturbées lorsque l’on s’éloigne de Γ pour
s’approcher d’un cas plus réaliste où l’on ne disposerait des données que sur Γ. Les
paramètres de stabilisation sont fixés à γdiv = γu = γp = 1.0, σ = 0.01 et γ = σD = 20.0.
La solution uex ainsi que la solution éléments finis classique et la solution ϕ-FEM (en
plus de sa projection sur un maillage conforme) sont représentées à la Figure 2.32.

4.5e-01 8.5e-01 1.2e+00 1.6e+00 2.0e+00
  

4.5e-01 8.5e-01 1.2e+00 1.6e+00 2.0e+00
   

3.8e-01 8.3e-01 1.3e+00 1.7e+00 2.2e+00
    

4.5e-01 8.5e-01 1.2e+00 1.6e+00 2.0e+00
     

Figure 2.32 – Cas test 2. De gauche à droite : solution manufacturée sur un maillage
fin, solution éléments finis, solution ϕ-FEM et projection sur un maillage conforme de la
solution ϕ-FEM.

Comme nous l’avons fait pour le Cas test 3 de la Section 2.2.2, nous allons séparer
l’étude numérique en deux cas : le cas matching et le cas not matching.

Cas de changement « conforme ». Commençons par étudier les cas où le change-
ment de conditions de bord intervient sur des faces du maillage T Γ

h , que l’on compare
au cas où le changement intervient sur un nœud d’un maillage standard. Ce cas sera
considéré comme un « changement de conditions de bord conforme » et correspond
aux Figures 2.12 et 2.31 (gauche). Ici, pour ϕ-FEM toutes les cellules de T Γ

h sont bien
attribuées soit à T ΓN

h ou à T ΓD
h , et il n’y a donc pas de cellules d’interface. Pour ce

cas, les résultats obtenus par ϕ-FEM et Standard FEM, tous deux avec des éléments
finis P2 pour uh, sont présentés à la Figure 2.33. Les erreurs relatives L2 et H1 en
fonction de h sont représentées sur la partie gauche. On observe alors que les ordres de
convergence optimaux sont atteints pour ϕ-FEM, tandis que la convergence en norme L2

est sous-optimale pour Standard-FEM. Dans ce cas, ϕ-FEM est toujours plus précis que
l’approche standard, en norme L2 comme H1. De plus, la Figure 2.33 (droite) illustre
qu’à nouveau, pour un seuil d’erreur fixé, les résultats seront obtenus plus rapidement
qu’avec une méthode standard.

Cas de changement « non conforme ». Considérons maintenant un cas moins arti-
ficiel concernant la jonction Dirichlet/Neumann, laquelle pouvant intervenir à l’intérieur
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Figure 2.33 – Cas test 2. Cas de maillages avec changement de conditions de bord
conforme. Gauche : erreurs relatives L2 et H1, en fonction des tailles de maillages. Droite :
temps de calcul en fonction de l’erreur relative L2.

d’une cellule de T Γ
h ou d’une face du maillage conforme FEM standard. Ce cas correspond

à la situation présentée aux Figures 2.11 et 2.31 (droite).
Les résultats numériques obtenus dans cette situation sont présentés à la Figure 2.34.

En comparaison avec les résultats obtenus Figure 2.33, on observe que le comportement
du schéma ϕ-FEM (2.36) n’est que très peu affecté par les cellules d’interface, puisque
les courbes de convergence sont seulement légèrement moins lisses. En particulier, les
conclusions faites précédemment sont toujours valables : la méthode ϕ-FEM est plus
précise sur des maillages comparables et moins coûteuse en temps de calcul pour une
erreur donnée que Standard-FEM.
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Figure 2.34 – Cas test 2. Cas de maillages avec changement de conditions de bord
non-conforme. Gauche : erreurs relatives L2 et H1, en fonction des tailles de maillages.
Droite : temps de calcul en fonction de l’erreur relative L2.
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2.4.2 Élasticité linéaire avec plusieurs matériaux.

Nous allons maintenant traiter le cas de problèmes avec interfaces, que nous modéli-
serons par une structure composée de deux matériaux, avec des paramètres d’élasticité
différents. Cette situation a été traitée par les méthodes XFEM [18, 4, 92, 90], CutFEM
[14, 43, 42, 53], et SBM [54]. Notre objectif est ici de démontrer l’applicabilité de notre
approche dans ce contexte. Pour cela, supposons que la structure considérée occupe un
domaine Ω, et est constituée de deux matériaux qui occupent des domaines Ω1 et Ω2,
séparés par une interface Γ. On suppose de plus que le matériau Ω1 est inclus dans le
domaine Ω. Ainsi, Γ = ∂Ω1, comme illustré à la Figure 2.35. On suppose également que
le déplacement u est donné à la frontière externe (∂Ω).
Le problème considéré est finalement de trouver u tel que

−divσ(u) = f , sur Ω\Γ ,
u = ug , sur ∂Ω ,

[u] = 0 , sur Γ ,
[σ(u) · n] = 0 , sur Γ ,

(2.41)

où n est la normale unitaire de Ω1 vers Ω2, et [·] est le saut sur Γ. Les paramètres
d’élasticité sont supposés constants sur chaque domaine, mais différents entre les deux
domaines. Le tenseur des contraintes est donné par

σ(u) =
{
σ1(u) = 2µ1ε(u) + λ1(divu)I , sur Ω1 ,

σ2(u) = 2µ2ε(u) + λ2(divu)I , sur Ω2 ,

avec les paramètres de Lamé λi et µi définis par (2.25), avec Ei, νi, i = 1, 2 donnés. En
introduisant les déplacements ui = u|Ωi , i = 1, 2 sur Ω1 et Ω2 séparément, le problème
(2.41) peut être réécrit sous la forme de deux problèmes couplés :

−divσi(ui) = f , sur Ωi , i = 1, 2,
u2 = ug , sur ∂Ω ,

u1 = u2 , sur Γ ,
σ1(u1)n = σ2(u2)n , sur Γ .

(2.42)

Supposons que le domaine Ω ait une forme suffisamment simple, de sorte qu’un
maillage conforme Th soit simple à générer précisément, par exemple un carré.
Remarque 2.17. Cette condition n’est pas particulièrement restrictive. En effet, dans le
cas d’une géométrie complexe, il sera possible de traiter les conditions de bord de Ω à
l’aide de ϕ-FEM.

Cependant, on suppose que le maillage Th n’est pas conforme à l’interface Γ. Nous
allons maintenant adapter la méthode ϕ-FEM à une telle situation. Le point de départ de
cette nouvelle version est la réécriture du problème sous la forme (2.42). Ainsi, nous allons
discrétiser séparément u1 dans Ω1 et u2 dans Ω2. Pour cela, commençons par introduire
deux maillages actifs Th,1 et Th,2, sous-maillages de Th, construits de sorte que Th,i
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contienne les cellules de Th en intersection avec Ωi. En pratique, ces deux sous-maillages
sont définis par une fonction level-set ϕ :

Ω1 = {ϕ > 0} ∩ Ω, Ω2 = {ϕ < 0}, Γ = {ϕ = 0} ∩ Ω ,

et ainsi Th,i, peuvent être construits en utilisant une interpolation ϕh de ϕ, par :

Th,1 := {T ∈ Th : T ∩ {ϕh > 0} 6= ∅} et Th,2 := {T ∈ Th : T ∩ {ϕh < 0} 6= ∅} . (2.43)

Le sous-maillage T Γ
h est défini comme l’intersection Th,1 ∩ Th,2 et Ωh,1, Ωh,2, ΩΓ

h sont
les domaines couvrant les maillages Th,1, Th,2, T Γ

h respectivement.
Les inconnues u1 et u2 seront discrétisées sur les domaines Ωh,1 et Ωh,2, en introduisant

des extensions sur les parties additionnelles proches de Γ. Pour traiter cette situation,
plusieurs variables auxiliaires seront nécessaires, proches de l’interface, i.e. sur ΩΓ

h.
En prolongeant ui aux domaines Ωi

h, on peut alors écrire une formulation faible au
niveau continu, donnée par :∫

Ωh,i
σi(ui) : ∇vi −

∫
∂Ωh,i

σi(ui)ni · vi =
∫

Ωh,i
f · vi,

∀vi sur Ωhi tel que vi = 0 sur ∂Ω . (2.44)

Par la suite, par abus de notation la partie de la frontière de Ωh,i autre que ∂Ω sera
notée ∂Ωh,i et ni correspondra à la normale unitaire sur ∂Ωh,i extérieure à Ωh,i. Les
conditions de bord sur ∂Ω, i.e. la deuxième équation dans (2.42), seront imposées forte-
ment. Les autres conditions, sur l’interface Γ seront imposées via ϕ-FEM, en introduisant
des variables auxiliaires sur ΩΓ

h : la variable vectorielle p (similaire à celle introduite pour
les conditions de Dirichlet précédemment) et les variables tensorielles y1 et y2 (similaires
à la variable y introduite pour les conditions de Neumann). Cela donne alors (cf. les deux
dernières équations de (2.42)) :

u1 − u2 + pϕ = 0 , sur ΩΓ
h, (2.45)

yi + σi(ui) = 0 , sur ΩΓ
h, i = 1, 2, (2.46)

y1∇ϕ− y2∇ϕ = 0 , sur ΩΓ
h . (2.47)

L’équation (2.47) prolonge la dernière équation de (2.42) de l’interface Γ au domaine
ΩΓ
h.
Discrétisons maintenant les équations (2.44)–(2.47).

Pour cela, on considérera k > 1, et

Vh,i :=
{
vh : Ωh,i → Rd : vh|T ∈ Pk(T )d ∀T ∈ Th,

vh continue sur Ωh,i , et vh = Ihu
g sur ∂Ω

}
(2.48)

où Ih est l’interpolant éléments finis classique, ainsi que les versions homogènes corres-
pondantes : V 0

h,i avec la contrainte vh = 0 sur ∂Ω, espaces utilisés pour les fonctions
test.
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De plus, on considérera les espaces Q(k)
h (ΩΓ

h) et Zh(ΩΓ
h) définis respectivement par

(2.27) et (2.35) pour discrétiser les variables auxiliaires. En combinant (2.44) avec (2.45)–
(2.47) introduites sous la forme des moindres carrés, on obtient le schéma suivant :
trouver uh,1 ∈ Vh,1, uh,2 ∈ Vh,2, ph ∈ Qk

h(ΩΓ
h), yh,1,yh,2 ∈ Zh(ΩΓ

h) tels que,

2∑
i=1

∫
Ωh,i

σi(uh,i) : ∇vh,i +
2∑
i=1

∫
∂Ωh,i

yh,in · vh

+ γp
h2

∫
ΩΓ
h

(uh,1 − uh,2 + 1
h
phϕh) · (vh,1 − vh,2 + 1

h
qhϕh)

+ γu

2∑
i=1

∫
ΩΓ
h

(yh,i + σi(uh,i)) : (zh,i + σi(vh,i))

+ γy
h2

∫
ΩΓ
h

(yh,1∇ϕh − yh,2∇ϕh) · (zh,1∇ϕh − zh,2∇ϕh)

+
2∑
i=1

(
Gh(uh,i,vh,i) + J lhs,Nh (yh,i, zh,i)

)
=

2∑
i=1

∫
Ωh,i

f · vh,i +
2∑
i=1

Jrhs,Nh (zh,i) ,

∀vh,1 ∈ V 0
h,1,vh,2 ∈ V 0

h,2, qh ∈ Qk
h(ΩΓ

h), zh,1, zh,2 ∈ Zh(ΩΓ
h) . (2.49)

Comme précédemment, les termes de stabilisation ont été ajoutés, avec Gh défini par
(2.28) et Jrhs,Nh par (2.40) avec ΩΓN

h remplacé par ΩΓ
h et en imposant divyi = f sur ΩΓ

h

à la manière des moindres carrés.

Cas test 3. On considère Ω = (0, 1)2 et Ω1, Ω2 définis par ϕ

ϕ(x, y) = −R2 + (x− 0.5)2 + (y − 0.5)2 ,

avec R = 0.3 comme illustré à la Figure 2.35. Une nouvelle fois, pour calculer l’erreur,
nous utiliserons une solution manufacturée, définie par

u = uex =
{ 1

E1
(cos(r)− cos(R))(1, 1)T si r < R,

1
E2

(cos(r)− cos(R))(1, 1)T sinon,

où r =
√

(x− 0.5)2 + (y − 0.5)2. On détermine alors f de manière analytique et on
impose ug = uex sur ∂Ω.

Les paramètres d’élasticité sont donnés par E1 = 7, E2 = 2.28 et ν1 = ν2 = 0.3. Une
représentation des maillages considérés pour ϕ-FEM et pour Standard-FEM est donnée
à la Figure 2.36.

Pour la méthode standard, la solution uh ∈ Vh est obtenue grâce au schéma

2∑
i=1

∫
Ωh,i

σi(uh) : ∇vh =
∫

Ω
f · vh, ∀ vh ∈ V 0

h , (2.50)

où Vh est l’espace éléments finis de degré Pk approchant ug sur ∂Ω et V 0
h est son analogue

homogène.
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Ω1 Γ

[σ(u) · n] = 0
[u] = 0

Ω2
u = ug

Figure 2.35 – Représentation de la géométrie considérée pour le cas test 3.

Th,1
Γ

Th,2 T Γ
h

Figure 2.36 – Cas test 3 : problème d’interface. Gauche : maillage ϕ-FEM, avec
T Γ
h représenté en violet. Droite : Maillage standard, conforme à l’interface Γ.

Les résultats obtenus avec le schéma ϕ-FEM (2.49) et la méthode standard (2.50), pour
des éléments finis P2 sont présentés à la Figure 2.38. On représente également à la figure
2.37 les déplacements obtenus par les deux méthodes ainsi que la solution de référence
et la projection sur un maillage conforme de la solution ϕ-FEM. Les conclusions sont
une nouvelle fois les mêmes que pour les deux cas test précédents : dans ce cas, ϕ-FEM
est plus précise que la méthode standard sur maillages de tailles comparables et moins
coûteuse en temps de calcul pour une erreur fixée.
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2.1e-21 3.0e-02 6.1e-02 9.1e-02 1.2e-01
  

9.0e-06 3.0e-02 6.1e-02 9.1e-02 1.2e-01
   

1.5e-09 3.0e-02 6.1e-02 9.1e-02 1.2e-01
    

1.9e-09 3.0e-02 6.1e-02 9.1e-02 1.2e-01
     

Figure 2.37 – Cas test 3 : problème d’interface. De gauche à Droite : solution
manufacturée sur un maillage fin, solution éléments finis, solution ϕ-FEM et projection
sur un maillage conforme de la solution ϕ-FEM.
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Figure 2.38 – Cas test 3 : problème d’interface. Gauche : erreurs relatives H1 et
L2 en fonction de la taille de maillage. Droite : temps de calcul en fonction de l’erreur
relative L2.

2.4.3 Problèmes avec des fractures

Considérons maintenant le cas d’un problème d’élasticité linéaire posé sur un domaine
avec une fracture, Ω \ Γf où Γf est une fracture (une courbe en 2D, une surface en 3D) à
l’intérieur du domaine Ω : 

−divσ(u) = f , sur Ω \ Γf ,
u = ug , sur ∂Ω ,

σ(u)n = g , sur Γf .
(2.51)

Ce type de problème est le domaine d’application original de la méthode XFEM, cf. [69].
Notre objectif va être d’adapter l’approche ϕ-FEM à ce type de problème.

En pratique, la géométrie de la fracture sera donnée par une première fonction level-set
ϕ (qui permettra de localiser la fracture en 2D et sa surface en 3D) et une seconde
level-set ψ qui localisera les extrémités de cette fracture :
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Γf := Ω ∩ {ϕ = 0} ∩ {ψ < 0} .

Supposons que la courbe (surface) Γ := {ϕ = 0} sépare Ω en deux sous-domaines Ω1
et Ω2, caractérisés respectivement par {ϕ < 0} et {ϕ > 0}, comme représenté à la Figure
2.39. L’interface Γ consiste alors en Γf et la partie (fictive) restante, Γint :

Γint := Ω ∩ {ϕ = 0} ∩ {ψ > 0} .

Γint

Γf

Ω1

Ω2

u = ug

Figure 2.39 – Représentation de la géométrie considérée pour le cas test 4.

Afin, de réutiliser le schéma ϕ-FEM (2.49) introduit précédemment pour les problèmes
d’interface, on peut reformuler le problème (2.51) en utilisant deux inconnues ui = u|Ωi ,
i = 1, 2, sous la forme : 

−divσ(ui) = f , sur Ωi ,

ui = ug , sur ∂Ω ,

[u] = 0 , sur Γint ,
[σ(u)n] = 0 , sur Γint ,
σ(u)n = g , sur Γf .

(2.52)

On suppose que la géométrie est suffisamment simple pour être maillée de façon
conforme par un maillage cartésien Th, ce dernier n’étant pas conforme à l’interface Γ.
Les variables u1 et u2 seront discrétisées séparément dans Ω1 et Ω2, en utilisant la forme
(2.52) comme point de départ. On introduit alors une nouvelle fois deux sous-maillages
Th,1 et Th,2, donnés par (2.43). De plus, on introduit un maillage sur l’interface, donné
par T Γ

h = Th,1 ∩ Th,2, séparé lui en deux sous-maillages en fonction de ψ :

T Γf
h := {T ∈ T Γ

h : ψ 6 0 sur T} et T Γint
h := {T ∈ T Γ

h : ψ > 0 sur T} .

Comme dans le cas des conditions mixtes Dirichlet/Neumann, cette définition peut
laisser quelques cellules n’appartenant à aucun des sous-maillages ou aux deux, comme
illustré à la Figure 2.40, où les cellules de T Γf

h et T Γint
h sont représentées respectivement

en rouge et en bleu. La situation décrite est représentée à la Figure 2.40 (droite) où les
cellules roses représentent les cellules restantes. Ces cellules correspondent aux cellules
en intersection avec la droite {ψ = 0}, correspondant à la droite caractérisant l’extrémité
interne de la fracture.
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Maintenant que les différents maillages sont définis, nous allons pouvoir construire
le schéma ϕ-FEM correspondant. Soit une nouvelle fois k ≥ 1. On considère Vh,1, Vh,2
les espaces éléments finis de degré k sur Th,1 et Th,2, ainsi que les espaces homogènes
correspondant, V 0

h,1, V 0
h,2 (cf. (2.48)) pour approcher u1 et u2. Ces espaces seront utilisés

pour la discrétisation de la formulation variationnelle de la première équation de (2.52)
et appliquer les conditions de bord sur ∂Ω. Les équations restantes dans (2.52), i.e. les
sauts sur Γint et les conditions de Neumann sur Γf seront traitées via ϕ-FEM et donc en
introduisant des variables auxiliaires sur les parties appropriées de ΩΓ

h (i.e. le domaine
recouvrant le maillage T Γ

h ) :

• les inconnues p et y1, y2 sur ΩΓint
h (domaine recouvrant T Γint

h ) serviront à imposer
la continuité du déplacement et des forces normales sur Γint avec les équations

u1 − u2 + pϕ = 0 , sur ΩΓint
h ,

yi = −σ(ui) , sur ΩΓint
h ,

y1 · ∇ϕ− y2 · ∇ϕ = 0 , sur ΩΓint
h ,

qui sont les mêmes que celles introduites dans (2.45)–(2.47), à la seule différence
qu’elles ne sont imposées que sur une portion de ΩΓ

h. Ces variables seront donc
discrétisées dans les espaces Qk

h(ΩΓint
h ) (cf. (2.27)) pour p et Zh(ΩΓint

h ) (cf. (2.35))
pour y1,y2.

• les inconnues pNi et yNi , i = 1, 2 définies sur ΩΓf
h (domaine couvrant T Γf

h ) serviront
elles à imposer les conditions de Neumann sur Γf , avec les équations

yNi = −σ(ui) , sur ΩΓf
h ,

yNi ∇ϕ+ pNi ϕ+ g|∇ϕ| = 0 , sur ΩΓf
h ,

les mêmes que (2.34)(a-b) cette fois seulement sur ΩΓf
h au lieu de ΩΓN

h .
Les variables pNi seront discrétisées dans Qk−1

h (ΩΓf
h ) et yNi dans Zh(ΩΓf

h ).

Remarque 2.18. Cette combinaison d’équations n’impose pas exactement les conditions
d’interface sur l’ensemble de Γ puisque cette dernière peut ne pas être complètement
couverte par ΩΓf

h ∪ ΩΓint
h . Ce défaut dans la formulation continue, sera comblé dans la

formulation discrète en introduisant les termes de stabilisation appropriés, comme nous
avons pu le voir pour le cas des conditions mixtes Dirichlet/Neumann.

Tout cela donne finalement le schéma : trouver uh,1 ∈ Vh,1, uh,2 ∈ Vh,2,
ph ∈ Qk

h(ΩΓint
h ), yh,1,yh,2 ∈ Zh(ΩΓint

h ), pNh,1,pNh,2 ∈ Q
k−1
h (ΩΓf

h ), yNh,1,yNh,2 ∈ Zh(ΩΓf
h ) tels
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que

2∑
i=1

(∫
Ωh,i

σ(uh,i) : ∇vh,i +
∫
∂Ωint

h,i

yh,in · vh,i +
∫
∂Ωf

h,i

yNh,in · vh,i

−
∫
∂Ωh,i\(∂Ωh,i,int∪∂Ωh,i,f )

σ(uh,i)n · vh,i
)

+ γp
h2

∫
ΩΓint
h

(uh,1 − uh,2 + 1
h
phϕh) · (vh,1 − vh,2 + 1

h
qhϕh)

+ γu

2∑
i=1

∫
ΩΓint
h

(yh,i + σ(uh,i)) : (zh,i + σ(vh,i))

+ γy
h2

∫
ΩΓint
h

(yh,1∇ϕh − yh,2∇ϕh) · (zh,1∇ϕh − zh,2∇ϕh)

+ γu,N

2∑
i=1

∫
Ω

Γf
h

(yNh,i + σ(uh,i)) : (zNh,i + σ(vh,i))

+ γp,N
h2

2∑
i=1

∫
Ω

Γf
h

(yNh,i∇ϕh + 1
h
pNh,iϕh) · (zNh,i∇ϕh + 1

h
qNh,iϕh)

+
2∑
i=1

(
Gh (uh,i,vh,i) + J lhs,inth (yh,i, zh,i) + J lhs,fh

(
yNh,i, z

N
h,i

))

=
2∑
i=1

∫
Ωh,i

f · vh,i −
γp,N
h2

2∑
i=1

∫
Ω

Γf
h

g|∇ϕh|(zNh,i∇ϕh + 1
h
qNh,iϕh)

+
2∑
i=1

(
Jrhs,inth (zh,i) + Jrhs,fh

(
zNh,i

))
,

∀vh,1 ∈ V 0
h,1,vh,2 ∈ V 0

h,2, qh ∈ Qk
h(ΩΓint

h ), zh,1, zh,2 ∈ Zh(ΩΓint
h ),

qNh,1, q
N
h,2 ∈ Qk−1

h (ΩΓf
h ), zNh,1, zNh,2 ∈ Zh(ΩΓf

h ) . (2.53)

Comme précédemment, Gh (2.28) a été ajoutée. De plus J lhs,inth , J lhs,fh (ainsi que
leurs analogues dans le second membre) ont été adaptés de J lhs,Nh (cf. (2.39)) pour
correspondre aux bons sous-maillages :

J lhs,inth (y, z) = γdiv

∫
ΩΓint
h

divy · div z , J lhs,fh (y, z) = γdiv

∫
Ω

Γf
h

divy · div z .

Comme introduit pour les problèmes d’interface, nous avons ici noté ∂Ωh,i les parties
de frontières de Ωh,i autres que ∂Ω. De plus ∂Ωint

h,i , partie de ∂Ωh,i est formée par les
faces de Th,i appartenant aux cellules de T Γint

h et ∂Ωf
h,i a été construit de la même façon.

Cas test 4. Soit Ω = (0, 1)2 avec l’interface Γ donnée par la level-set

ϕ(x, y) = y − 1
4 sin(2πx)− 1

2 .
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L’extrémité interne de la fracture sera au point d’abscisse x = 0.5, ainsi

Γint := {ϕ = 0} ∩ {x < 0.5} et Γf := {ϕ = 0} ∩ {x > 0.5} .

Cette situation est représentée à la Figure 2.39.
Le schéma ϕ-FEM (2.53) est utilisé pour résoudre (2.51), avec la solution manufacturée

u = uex = (sin(x)× exp(y), sin(y)× exp(x))T

définissant f , g, et ug.
Les forces g sur la fracture sont étendues à un voisinage de Γf , construit par

g = σ(uex) ∇ϕ
‖∇ϕ‖

+ ϕuex .

Les paramètres de stabilisation sont fixés à γu = γp = γdiv = γu,N = γp,N = γdiv,N = 1.0,
σp = 1.0 et σD = 20.0.

Th T Γf
h T Γint

h Th T Γf
h T Γint

h T ΓI
h

Figure 2.40 – Cas test 4 : cas d’une fracture. Maillages ϕ-FEM. Gauche : maillage
« conforme » à l’extrémité de la fracture ; les cellules de T Γint

h sont en bleu ; celles de T Γf
h

en rouge. Droite : maillage « non-conforme » à l’extrémité de la fracture ; en rose les
cellules de l’interface entre T Γint

h et T Γf
h .

Deux séries de simulations ont été réalisées pour étudier les résultats de ϕ-FEM
(2.53), avec des éléments finis P2 : premièrement pour le cas de la Figure 2.40 (gauche)
où l’extrémité de la fracture intervient sur une face du maillage et deuxièmement, lorsque
celle-ci est à l’intérieur d’une cellule du maillage, i.e. Figure 2.40 (droite).
Les résultats présentés Figure 2.41, indiquent que la convergence de ϕ-FEM est optimale,
dans les deux situations.
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Figure 2.41 – Cas test 4 : cas d’une fracture. Erreurs relatives H1 et L2 en fonction
de la taille de cellule. Gauche : maillages « conformes » à l’extrémité de la fracture.
Droite : maillages « non-conformes » à l’extrémité de la fracture.

2.4.4 Nouveaux résultats pour des conditions mixtes

Dans les cas test précédents, nous avons étudié numériquement la convergence des
schémas proposés. En particulier, pour le cas de l’équation (2.24), et donc du schéma
(2.36), nous n’avons considéré que des solutions manufacturées. L’avantage de ces solutions
est la facilité de calcul de l’erreur commise par les méthodes numériques. Cependant,
comme nous l’avons vu à la Section 2.2, la plus grosse difficulté dans le cas de conditions
mixtes est le traitement de la singularité de changement de conditions de bord. Or,
les solutions manufacturées présentées ne présentent pas de telle difficulté. Il est donc
important pour appuyer la validation numérique de notre méthode de considérer des cas
test supplémentaires, plus réalistes. Nous allons ainsi proposer deux cas test numériques
sans solution manufacturée : le premier ne présentera pas de singularité, le second en
comportera 2.

Cas test 6 : anneau. Dans un premier temps, on se place dans la situation du premier
cas test de la Section 2.2, représentée à la Figure 2.13 (gauche), et on considère l’équation
(2.24), avec f = (0,−ρg) avec ρ = 0.6 et g = 9.81. De plus, on fixe ug = (0, 0) sur ΓD et
g = (0, 0) sur ΓN . On applique alors le schéma (2.36) à ce problème et on le compare à
une méthode éléments finis classique. Pour calculer l’erreur, la solution de référence sera
obtenue par une méthode éléments finis classique, sur un maillage conforme, avec une
taille de cellule h ≈ 0.001.

Les configurations initiale et déformées pour ce cas test, sont représentées à la Figure
2.42, ainsi que la différence entre les solutions approchées et la solution de référence.

On représente à la Figure 2.43 les résultats obtenus pour ϕ-FEM et une méthode
éléments finis classique. Les erreurs relatives L2 et H1 sont représentées à la Figure 2.43,
semblant confirmer ceux obtenus précédemment, pour des solutions manufacturées. Ainsi,
les ordres de convergence optimaux sont atteints pour ϕ-FEM alors que la méthode
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standard est sous-optimale pour les deux normes.

Reference initial geometry

0.00e+00 4.55e-02 9.11e-02 1.37e-01 1.82e-01
 

3.49e-19 8.59e-06 1.72e-05 2.58e-05 3.43e-05
  

1.54e-09 1.40e-06 2.80e-06 4.20e-06 5.60e-06
   

Figure 2.42 – Cas test 6. Configurations déformées pour les solutions obtenues.
Les nuances de couleurs représentent le déplacement pour la solution de référence et
l’erreur en norme L2 (en chaque point) pour ϕ-FEM et FEM standard.
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Figure 2.43 – Cas test 6. Erreurs relatives L2 et H1 en fonction de h.

Cas test 7 : disque avec une singularité. Enfin, un cas test supplémentaire impor-
tant pour valider notre méthode est le cas où une singularité de changement de conditions
de bord est présente. Dans ce cas, comme nous l’avons vu pour le problème de Poisson
dans la Section 2.2, la solution est au plus H3/2 et donc la convergence espérée est d’ordre
1 en norme L2 et d’ordre 0.5 en norme H1. Pour vérifier que ces ordres sont atteints,
nous considérerons le cas d’un disque fixé sur sa partie haute, et sans contrainte sur la
moitié basse, soumis à la gravité, i.e. avec des conditions de Dirichlet sur Γ∩{y > 0.5} et
de Neumann homogènes sur Γ ∩ {y 6 0.5} et un second membre donné par f = (0,−ρg)
avec ρ = 0.6 et g = 9.81.

Pour le calcul d’erreur, la solution de référence sera obtenue par une méthode éléments
finis classique, sur un maillage conforme très fin. Comme pour le cas test 2 de cette
section, nous considérerons 2 situations différentes : dans le premier cas, le changement
de conditions de bord sera sur un nœud du maillage standard et par analogie sur une
face du maillage ϕ-FEM ; dans le second cas, le changement sera situé sur une face du
maillage standard et à l’intérieur d’une cellule du maillage ϕ-FEM. Les configurations
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initiales et déformées pour un tel cas test, dans la dernière situation, sont représentées
à la Figure 2.44, ainsi que la différence entre les solutions approchées et la solution de
référence.

Reference initial geometry

1.31e-20 2.34e-02 4.68e-02 7.02e-02 9.36e-02
 

4.13e-08 1.81e-03 3.62e-03 5.43e-03 7.24e-03
  

1.68e-10 1.53e-03 3.06e-03 4.59e-03 6.12e-03
   

Figure 2.44 – Cas test 7. Configurations déformées pour les solutions obtenues.
Les nuances de couleurs représentent le déplacement pour la solution de référence et
l’erreur en norme L2 (en chaque point) pour ϕ-FEM et FEM standard.
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Figure 2.45 – Cas test 7. Erreurs relatives L2 et H1 en fonction de h.
Gauche : cas où la jonction intervient sur une face de ΩΓ

h . Droite : cas où la jonction est
à l’intérieur d’une cellule de ΩΓ

h.

On représente à la Figure 2.45 les résultats obtenus pour ϕ-FEM et une méthode
éléments finis classique. Dans les deux situations, l’ordre optimal est atteint pour la
norme L2 ainsi que pour la norme H1. De plus, dans les deux cas, l’erreur obtenue en
norme L2 est plus faible pour ϕ-FEM que pour l’approche standard. Cependant, dans
la première situation (Figure 2.45, gauche) la méthode standard donne de meilleurs
résultats que la méthode ϕ-FEM en norme H1.

2.5 ϕ-FEM pour l’élasticité non-linéaire
Enfin, le dernier problème type qui sera considéré dans ce manuscrit sera la déformation

de matériaux élastiques non-linéaires. Ces équations sont proches de (2.24) à la différence
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que le tenseur considéré n’est pas linéaire. Ainsi, le problème sera de trouver u ∈ Rd
vérifiant 

−divP (u) = f , dans Ω ,

u = uD , sur ΓD ,
P (u) · n = g , sur ΓN ,

(2.54)

pour f , uD et g données.
Pour modéliser ce problème, il est possible de considérer différents types de matériaux,

modélisant de manière plus ou moins précise (et ainsi plus ou moins complexe) les grandes
déformations. Ainsi, l’expression du tenseur P sera modifiée en accord avec le type de
matériau choisi. Par exemple, considérant un matériau compressible modélisé avec une
loi Néo-Hookéenne, le premier tenseur des contraintes de Piola-Kirchhoff P , est donné
par (c.f. [48, eq. (6.1)]) :

P (F (u)) = ∂W (F (u))
∂F

,

que l’on notera par la suite P (u), où la fonction W est définie par (c.f. [8]) :

W = µ

2 (I1 − 3− 2 ln(J)) + λ

2 ln(J)2 .

Ici, I1 = tr(C) est le premier invariant du tenseur de déformation de Cauchy-Green, C,
donné par C = F T · F , où F = I +∇u est le tenseur de déformation. Enfin, J = detF
est le déterminant Jacobien.

Les paramètres µ et λ sont définis de la même manière que pour les équations
d’élasticité linéaire vues précédemment.

Remarque 2.19. On peut également considérer d’autres lois, telles que la loi de Saint-
Venant-Kirchhoff, plus proche de l’élasticité linéaire, pour laquelle W est donnée par

W = 1
2λ(trE)2 + µ(E : E) .

2.5.1 Construction du schéma

On se place dans le contexte de l’équation (2.54). Le schéma ϕ-FEM sera construit
de la même manière que le schéma (2.36), en introduisant des variables y, pN et pD sur
ΩΓN
h et ΩΓD

h qui sont eux construits comme précédemment. Il suffit alors d’adapter les
équations (2.34) au nouveau cas considéré, ce qui donne ainsi

y + P (u) = 0, sur ΩΓN
h ,

y∇ϕ+ pNϕ = −g|∇ϕ|, sur ΩΓN
h .



2.5. ϕ-FEM POUR L’ÉLASTICITÉ NON-LINÉAIRE 77

Le schéma ϕ-FEM pour résoudre (2.54) est finalement donné par :
trouver uh ∈ V k

h , ph,N ∈ Q
(k−1)
h (ΩΓN

h ), yh ∈ Zh(ΩΓN
h ) et ph,D ∈ Q(k)

h (ΩΓD
h ) tels que∫

Ωh
P (uh) : ∇vh +

∫
∂ΩΓN

h

yhn · vh −
∫
∂Ωh\∂ΩΓN

h

∇uhn · vh −
∫

Ωh
fhvh

+ γD

∫
ΩΓD
h

(uh −
1
h
ϕhph,D − uh,D)(vh −

1
h
ϕhqh,D)

+ σDh
2 ∑
T∈T ΓD

h
∪T ΓInt

h

∫
T

(divP (uh) + fh) div(Du(P )(uh)vh)

+ γu

∫
ΩΓN
h

(yh + P (uh)) : (zh +Du(P )(uh)vh)

+ γp
h2

∫
ΩΓN
h

(yh∇ϕh + 1
h
ph,Nϕh + g|∇ϕh|) · (zh∇ϕh + 1

h
qh,Nϕh)

+ γdiv

∫
ΩΓN
h

(divyh + fh) · div zh +Gh (uh,vh) = 0 ,

∀vh ∈ V k
h , qh,N ∈ Q

(k−1)
h (ΩΓN

h ), zh ∈ Zh(ΩΓN
h ), qh,D ∈ Q(k)

h (ΩΓD
h ) ,

où

Gh(u,v) := σDh
∑

E∈FΓD
h

∫
E

[P (u)n] · [Du(P )(u)vn]

+ σNh
∑

E∈FNS
h

∫
E

[P (u)n] · [Du(P )(u)vn] ,

avec Du(P )(u)v la dérivée de P évaluée en u, dans la direction v et γp, γu, γdiv, σN des
constantes positives.

2.5.2 Résultats numériques

Nous allons maintenant comparer ce schéma à une méthode éléments finis classique
pour évaluer ses performances. Pour cela, nous étudierons 2 cas test numériques, notam-
ment adaptés des situations vues précédemment dans le cas de l’élasticité linéaire.
Dans un premier temps, nous validerons le schéma sur le cas de l’anneau pour lequel la
solution ne présente pas de singularité. Puis, nous considérerons un cas test modélisant
la déformation d’une poutre avec des coins arrondis.

Cas test 1 : déformation d’un anneau. Pour ce premier cas, on se place dans le
contexte d’une solution sans singularité, en considérant la géométrie du Cas test 1 de la
Section 2.2.2 (représentée à la Figure 2.13, Gauche) avec le grand disque de rayon 0.4 et
le petit de rayon 0.1. Le domaine est déformé par la gravité, et donc f = (0,−ρg). On
considère de plus le cas de conditions homogènes sur ΓD et ΓN et le matériau est modélisé
par une loi Néo-Hookéenne. Comme pour le cas de l’élasticité linéaire, les éléments finis
utilisés sont de degré 2. Les déformations obtenues sont représentées à la Figure 2.46.
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Reference initial geometry

6.37e-20 3.63e-02 7.27e-02 1.09e-01 1.45e-01
 

1.28e-07 2.15e-05 4.29e-05 6.43e-05 8.57e-05
  

1.31e-19 2.43e-05 4.86e-05 7.29e-05 9.72e-05
   

Figure 2.46 – Cas test 1. De gauche à droite : géométrie considérée ; solution de
référence et géométrie déformée par cette solution ; géométrie déformée par la solution
Standard-FEM ; géométrie déformée par la solution ϕ-FEM.

On calcule alors l’erreur relative L2 pour ϕ-FEM et Standard-FEM, par rapport à
une solution de référence. Les résultats obtenus sont représentés à la Figure 2.47, où l’on
observe comme dans le cas de l’élasticité linéaire que les erreurs de ϕ-FEM convergent
à l’ordre 3 lorsque Standard-FEM converge à l’ordre 2. Cependant, il est important de
préciser que, le système non-linéaire généré par le schéma ϕ-FEM est plus lourd que
celui de Standard-FEM et il est donc nécessaire de réaliser plus d’itérations lors de la
résolution numérique, ce qui est plus coûteux en temps de calcul.
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Figure 2.47 – Cas test 1. Erreurs relatives L2 en fonction de la taille de cellule h.

Cas test 2 : déformation d’une poutre 2D. Pour le second cas test, nous allons
maintenant considérer une situation plus complexe présentant des singularités de change-
ment de conditions de bord. Pour cela, la géométrie représentera une poutre dont les 4
coins seront arrondis, caractérisée par une fonction level-set

ϕ(x, y) =
(

(x− 0.5)4

0.434 + (y − 0.5)4

0.174

)0.25

− 1 .
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La partie gauche de la poutre sera fixée (conditions de Dirichlet u = 0) et la partie droite
sera libre (conditions de Neumann P (u) · n = 0). Les frontières Dirichlet et Neumann
seront caractérisées par la fonction level-set ψ(x, y) = x− 0.3, ce qui donne la situation
représentée à la Figure 2.48. Enfin, le second membre de (2.54) sera la gravité.

Ω

ΓD
u = 0

ΓN
σn = 0

Figure 2.48 – Cas test 2. Représentation de la situation considérée pour la déformation
d’une poutre.

On compare alors la méthode ϕ-FEM à la méthode Standard-FEM, en calculant
l’erreur par rapport à une solution de référence Standard-FEM, obtenue sur un maillage
fin.

Reference initial geometry

0.00e+00 3.27e-02 6.55e-02 9.82e-02 1.31e-01
 

2.22e-12 7.85e-04 1.57e-03 2.36e-03 3.14e-03
  

4.01e-09 9.46e-04 1.89e-03 2.84e-03 3.78e-03
   

Figure 2.49 – Cas test 2. De gauche à droite : géométrie considérée ; solution de
référence et géométrie déformée par cette solution ; géométrie déformée par la solution
Standard-FEM ; géométrie déformée par la solution ϕ-FEM.

On représente un exemple de solutions obtenues par les deux méthodes à la Figure
2.49. Les résultats numériques présentés à la Figure 2.50 illustrent que les deux méthodes
atteignent une convergence d’ordre 1 en norme L2 relative, la méthode ϕ-FEM offrant
des erreurs légèrement plus faibles que la méthode Standard-FEM.
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Figure 2.50 – Cas test 2. Erreurs relatives L2 en fonction de la taille de cellule h.

2.6 Conclusion
Dans ce chapitre, nous avons présenté plusieurs schémas ϕ-FEM permettant de

résoudre différents problèmes classiquement traités par les méthodes éléments finis. Nous
avons dans un premier temps introduit une nouvelle version de la méthode ϕ-FEM pour
résoudre le problème de Poisson avec conditions de Dirichlet, ayant l’avantage d’être
compatible avec le schéma ϕ-FEM pour les conditions de Neumann, ce qui nous a alors
permis de construire un schéma complet adapté au cas de conditions mixtes.

Nous avons par la suite traité le cas de l’équation de la chaleur pour laquelle la
méthode ϕ-FEM s’est montrée très intéressante. En effet, nous avons démontré et illustré
numériquement que la méthode converge de manière quasi-optimale.

Enfin, nous avons étendu notre étude numérique à différents problèmes d’élasticité,
linéaire et non-linéaire. Dans tous les cas étudiés, la méthode ϕ-FEM s’est montrée au
moins aussi performante que la méthode des éléments finis classique, avec des gains
notables en précision et en coût de calcul.



3 ϕ-FD : ϕ-FEM adaptée aux différences finies

Résumé

Dans ce chapitre, nous présentons une nouvelle approche aux diffé-
rences finies, inspirée de la méthode ϕ-FEM. Cette méthode, appelée
ϕ-FD, utilise des grilles cartésiennes, offrant une simplicité d’implémen-
tation. De plus, contrairement aux schémas de différences finies existants
pour des domaines complexes, la matrice associée à la méthode est bien
conditionnée.

L’utilisation d’une fonction level-set pour décrire la géométrie rend
cette approche relativement flexible. Nous démontrons ici des taux
de convergence quasi-optimaux ainsi que le bon conditionnement de
la matrice. Des expériences numériques en 2D et 3D valideront les
performances de la méthode ϕ-FD par rapport aux méthodes standard
éléments finis et à l’approche de Shortley-Weller. Nous proposerons
finalement une combinaison avec une technique multigrid pour accélérer
davantage les calculs.
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Dans ce chapitre, nous allons proposer une nouvelle approche aux différences finies
pour résoudre l’équation de Poisson Dirichlet (1.1) sur un domaine Ω, de frontière Γ = ∂Ω,
que l’on rappelle : {

−∆u = f , dans Ω ,

u = 0 , sur Γ .

81
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Les résultats présentés dans ce chapitre ont été publiés dans l’article [25].
Nous avons jusqu’à présent considéré uniquement des méthodes éléments finis pour

résoudre des EDP. Cependant, une autre méthode répendue dans ce domaine est la
méthode des différences finies. Cette méthode est répandue notamment en raison de son
efficacité numérique. En revanche, les approches différences finies classiques sont très
limitées puisque nécessitant l’utilisation de grilles cartésiennes exclusivement. L’approche
principale utilisée dans la littérature pour appliquer des méthodes aux différences finies à
des géométries complexes est la méthode introduite par Shortley et Weller dans [82]. Dans
[89, 9], les auteurs ont proposé des techniques d’étude de convergence pour cette méthode,
utilisant des fonctions de Green discrètes ainsi que le principe du maximum pour obtenir
des estimations précises des coefficients de la matrice inverse. Ces estimations génèrent
parfois des phénomènes de « supraconvergence », où le schéma numérique converge à un
ordre plus élevé que l’ordre espéré en théorie. Dans [20], les auteurs ont considéré des
problèmes elliptiques avec des interfaces immergées. Un schéma de second ordre pour
résoudre l’équation de Poisson avec conditions de Dirichlet sur des domaines irréguliers
a été proposé dans [37]. La méthode d’interface immergée [55] est basée sur une grille
cartésienne et associée à un schéma aux différences finies de second ordre, pour des
équations elliptiques de second ordre générales ainsi que des équations paraboliques
linéaires. La combinaison des différences finies et de méthodes non conformes est ainsi
une idée naturelle. Cependant, l’inconvénient des méthodes proposées précédemment
dans la littérature est généralement le mauvais conditionnement des matrices associées.

Dans ce chapitre, nous proposons un schéma aux différences finies sur grille cartésienne
inspiré par ϕ-FEM. La géométrie sera décrite par une fonction level-set ϕ, utilisée pour
appliquer les conditions de bord par pénalisation. Cette nouvelle méthode, appelée ϕ-FD
allie convergence optimale, bon conditionnement de la matrice associée au problème et
facilité d’implémentation (peu de lignes de code python, avec l’aide du package scipy
[88], cf. Annexe A.1). La première section de ce chapitre sera dédiée à la présentation
du schéma. Dans la deuxième section, nous ferons le lien entre cette méthode et la
méthode ϕ-FEM, en particulier une version légèrement modifiée du schéma dual (2.2).
Nous proposerons ensuite des preuves de résultats théoriques à la troisième section.
Une deuxième version de schéma ϕ-FD sera introduite dans la quatrième section, sans
résultat théorique. Enfin, la dernière section sera dédiée à la présentation des résultats
numériques.

3.1 Présentation du schéma et des résultats principaux

On considère un domaine Ω défini par une fonction ϕ, telle que Ω = {ϕ < 0} , et
Γ = {ϕ = 0}.

On suppose que Ω est inclus dans O :=
n∏
i=1

[ai, bi] avec bi − ai = bj − aj pour i 6= j.

Soit N ∈ N∗, h = (b1 − a1)/N , on considère la grille cartésienne couvrant ce rectangle :

Oh := {xα : α ∈ {0, · · · , N}n}
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avec xαi = ai + αih pour α = (α1, · · · , αn). On note

D =


{1}, si n = 1,
{(1, 0), (0, 1)}, si n = 2,
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}, si n = 3 ,

et on définit les sous-grilles suivantes :

Ωh = {xα ∈ Oh : xα ∈ Ω ou xα±d ∈ Ω, d ∈ D} ,

Ωint
h = {xα ∈ Oh : xα ∈ Ω} .

De plus, soit Ωh, l’union des carrés de sommets xα ∈ Oh en intersection avec Ω et
soit Ωint

h l’union des carrés de sommets xα ∈ Oh inclus dans Ω. Un exemple de situation
est représenté à la Figure 3.1.

Ωh Ωh Γ

Figure 3.1 – Représentation de Ωh, Ωh et Γ.

Présentons maintenant notre schéma, qui sera introduit ici pour toute dimension. Le
schéma sera également décrit en 2 dimensions, avec les indices explicités en Section 3.3.
Le schéma est donné par : trouver une fonction discrète uh = (uα)α:xα∈Ωh définie sur Ωh,
telle que

ah(uh, vh) = lh(vh), (3.1)

pour toute fonction discrète vh = (vα)α:xα∈Ωh définie sur Ωh, où

ah(uh, vh) = (−∆huh, vh) + bh(uh, vh) + jh(uh, vh) ,

et
lh(vh) =

∑
α:xα∈Ωint

h

∑
d∈D

fαvα ,
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avec fα = (f(xα))α, le Laplacien discret :

(−∆huh, vh) =
∑

α:xα∈Ωint
h

∑
d∈D

−uα−d + 2uα − uα+d
h2 vα,

la pénalisation pour imposer les conditions de bord

bh(uh, vh) = γ

2h2

∑
(α,d)∈B

1
ϕ2
α + ϕ2

α+d
(ϕα+duα − ϕαuα+d)(ϕα+dvα − ϕαvα+d)

et un terme de stabilisation proche de la frontière

jh(uh, vh) = σ
∑

(α,d)∈J

−uα−d + 2uα − uα+d
h

× −vα−d + 2vα − vα+d
h

avec γ, σ > 0 et

B = {(α, d)| le segment xα − xα+d intersecte Γ et n’est pas inclus dans Γ},

J = {(α, d)|xα ∈ Ω et [xα−d 6∈ Ω ou xα+d 6∈ Ω]}.
Les normes discrètes L2, L∞ et la semi-norme discrète H1 sont définies pour tout

vh = (vα)α:xα∈Ωint
h

par

‖vh‖h,0 =

hn ∑
α:xα∈Ωint

h

v2
α


1/2

, ‖vh‖h,∞ = max
α:xα∈Ωint

h

|vα|

et

|vh|h,1 =


∑

α,d:xα∈Ωint

et xα+d∈Ωint

hn
∣∣∣∣vα+d − vα

h

∣∣∣∣2


1/2

.

Dans la suite de ce chapitre, dans les différentes inégalités, C sera utilisée pour des
constantes indépendantes de h et de f .

Introduisons maintenant la notion de régularité qui sera nécessaire sur le domaine :

Définition 3.1. Un domaine Ω est dit r-smooth, si pour chaque point x0 ∈ Γ il existe
un cône centré en x0 d’angle strictement plus grand que π/2 et de rayon r, inclus dans Ω.

Énonçons maintenant le résultat principal de ce chapitre, le résultat de convergence :

Théorème 3.1 (Convergence, cf. [25, Théorème 1]). Supposons que Ω est r-smooth, pour
r > 0 et est défini par une fonction level-set ϕ ∈ C2(Ωh). Soit u la solution du problème
continu (1.1), telle que u ∈ C4(Ω). Pour σ, γ suffisamment grands et h < 2r√

10
, le système

discret (3.1) admet une unique solution uh. Dans ce cas, notant U = (u(xα))α:xα∈Ωint
h
,

alors
‖U − uh‖h,0 + ‖U − uh‖h,∞ + |U − uh|h,1+ 6 Ch3/2‖u‖C4(Ω).
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Remarque 3.1. Il est intéressant de remarquer que :
• L’ordre de convergence L2 donné dans le Théorème 3.1 pourrait ne pas être optimal

puisque numériquement, on observe une convergence d’ordre 2. De plus, les schémas
différences finies classiques sont également d’ordre 2.

• Pour la norme H1, l’ordre de convergence est plus élevé que pour les méthodes
éléments finis. Ce phénomène est bien connu et est appelé supraconvergence (cf.
[35] par exemple).

De plus, la matrice associée au système discret est bien conditionnée :

Théorème 3.2 (Conditionnement, cf. [25, Théorème 2]). Sous les hypothèses du théorème
3.1, le conditionnement défini par κ(A) := ‖A‖2‖A−1‖2 de la matrice A associée à la
forme bilinéaire ah vérifie

κ(A) ≤ Ch−2.

Ici, ‖ · ‖2 est la norme matricielle associée à la norme euclidienne.

Ces deux théorèmes seront prouvés à la Section 3.3 dans le cas 2D pour des raisons
de lisibilité. Cependant, les preuves peuvent être étendues de la même façon en ajoutant
les indices correspondants en 3 dimensions.

Remarque 3.2. Dans le cas de conditions de Dirichlet non homogènes uDh = (uDα )α, il est
nécessaire d’ajouter le terme suivant dans le second membre :

brhsh (vh) = γ

2h2

 ∑
(α,d)∈B

1
ϕ2
α + ϕ2

α+d
(ϕα+du

D
α − ϕαuDα+d)(ϕα+dvα − ϕαvα+d)

 .

3.2 Lien avec ϕ-FEM

On considère un maillage cartésien T Oh triangulaire (ou tétraédrique en 3D) de O
avec des nœuds (xα), Th l’ensemble de cellules de T Oh en intersection avec Ω, ΩEF

h le
domaine couvert par le maillage Th et ∂ΩEF

h sa frontière. Soit EΓ
h l’ensemble des faces de

Th coupées par Γ et FΓ
h l’ensemble des faces internes des cellules de Th coupées par Γ (cf.

(1.8)). On définit

Vh = {vh ∈ C0(Ωh) : vh|K ∈ P1(K) ∀K ∈ Th}

et
Qh = {ph ∈ L2(EΓ

h ) : ph|K ∈ P0(E) ∀E ∈ EΓ
h },

où EΓ
h = ∪E∈EΓ

h
E.

On construit alors le schéma ϕ-FEM suivant pour (1.1) :
Trouver (uh, ph) ∈ Vh ×Qh tels que
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∫
Ωh
∇uh · ∇vh −

∫
∂Ωh
∇uh · nvh + γ

h

∑
E∈EΓ

h

∫
E

(uh − ϕhph)(vh − ϕhqh)

+ σh
∑
F∈FΓ

h

∫
F

[n · ∇uh][n · ∇vh] =
∫

Ωh
fvh, ∀(vh, qh) ∈ Vh ×Qh. (3.2)

Cette version du schéma ϕ-FEM est une variante de la version proposée à la Section
2.1, où l’on impose uh ∼ ϕhph par pénalisation sur les faces E ∈ EΓ

h . La solution uh est
représentée par ses valeurs uα aux nœuds xα. Si xα et tous ses voisins sont à l’intérieur
de Ω, alors (3.2) donne la discrétisation∑

d∈D

−uα−d + 2uα − uα+d
h2 = fα. (3.3)

Ainsi, nous obtenons les équations aux nœuds intérieurs mais les inconnues sont
également définies aux nœuds extérieurs à Ω, adjacents à un nœud interne.
Si vh est une fonction de base associée à un tel nœud, alors la contribution

∫
Ωh ∇uh ·

∇vh −
∫
∂Ωh ∇uh · nvh et la partie correspondante dans le second membre

∫
Ωh fvh sont

ignorées. Sinon, on conserve l’équation venant de
γ

h3

∑
E∈EΓ

h

∫
E

(uh − ϕhph)(vh − ϕhqh), (3.4)

qui a été divisée par h2 par cohérence avec (3.3). Pour toute face E ∈ EΓ
h , ph et qh sur E

valent pE et qE . En prenant vh = 0 dans (3.4), cela donne∫
E

(uh − ϕhpE)ϕh = 0,

et donc
pE =

∫
E uhϕh∫
E ϕ

2
h

.

Finalement, en prenant qh = 0 et en remplaçant ph, (3.4) devient

γ

h3

∑
E∈EΓ

h

∫
E

(
uh −

∫
E uhϕh∫
E ϕ

2
h

ϕh

)
vh. (3.5)

Dans le cas où E ∈ EΓ
h est une face de xα à xα+d, avec xα dans Ω et xα+d en-dehors,

et d ∈ D,

uh −
∫
E uhϕh∫
E ϕ

2
h

ϕh =


ϕα+d

ϕ2
α+ϕ2

α+d
(ϕα+duα − ϕαuα+d) en xα,

ϕα
ϕ2
α+ϕ2

α+d
(ϕαuα+d − ϕα+duα) en xα+d

,

de sorte que la contribution à (3.5) sur cette face E est donnée par
γ

2h2
1

ϕ2
α + ϕ2

α+d
(ϕα+duα − ϕαuα+d)(ϕα+dvα − ϕαvα+d),
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qui est du même ordre que le terme de pénalisation bh. Des formules similaires sont
valables pour les autres configurations des faces E ∈ EΓ

h . On obtient finalement la matrice
qui représente (3.4), qui doit être ajoutée à la matrice qui représente (3.3).

Finalement, la « ghost penalty »,

σh
∑
F∈FΓ

h

∫
F

[n · ∇uh][n · ∇vh], (3.6)

qui sera également divisée par h2 peut être approchée à la manière des différences finies.
Ainsi, en considérant un nœud xα à l’intérieur de Ω tel que xα+d soit à l’extérieur de Ω
avec d ∈ D, les deux côtés (xα−d − xα) et (xα − xα+d) adjacents à xα sont dans FΓ

h et
les contributions sur ces côtés peuvent être approchées par

σ
−uα−d + 2uα − uα+d

h
× −vα−d + 2vα − vα+d

h
.

3.3 Preuves des théorèmes de convergence

La majorité de la littérature [59, 50] analyse les méthodes différences finies en utilisant
le formalisme des méthodes éléments finis ou volumes finis [49] pour des problèmes
elliptiques. Nous avons fait le choix ici de suivre le formalisme éléments finis.

Introduisons les normes discrètes L2, L∞ et semi-H1 sur Ωh, définies pour tout
vh = (vα)α:xα∈Ωh par

‖vh‖h,0,Ωh =

h2 ∑
α:xα∈Ωh

v2
α

1/2

, ‖vh‖h,∞,Ωh = max
α:xα∈Ωh

|vα|

et

|vh|h,1,Ωh =


∑

α,d:xα∈Ω
or xα+d∈Ω

h2
∣∣∣∣vα+d − vα

h

∣∣∣∣2


1/2

.

Comme dit précédemment, nous allons ici nous concentrer sur le cas 2D, mais les
situations en dimensions supérieures peuvent être traitées similairement.
Dans cette situation le problème peut être réécrit sous la forme : trouver une fonction
discrète uh = (uij)ij définie sur Ωh telle que

ah(uh, vh) = lh(vh),

pour toute fonction discrète vh = (vij)ij définie sur Ωh, où

ah(uh, vh) = (−∆huh, vh) + bh(uh, vh) + jh(uh, vh) ,

et
lh(vh) =

∑
i,j

fijvij ,
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avec le Laplacien discret :

(−∆huh, vh) =
∑

i,j|(xi,yj)∈Ω

4uij − ui−1,j − ui+1,j − ui,j−1 − ui,j+1
h2 vij ,

une pénalisation pour les conditions de bord

bh(uh, vh) = γ

h2

 ∑
(i,j)∈Bx

1
ϕ2
ij + ϕ2

i+1,j
(ϕi+1,juij − ϕijui+1,j)(ϕi+1,jvij − ϕijvi+1,j)

+
∑

(i,j)∈By

1
ϕ2
ij + ϕ2

i,j+1
(ϕi,j+1uij − ϕijui,j+1)(ϕi,j+1vij − ϕijvi,j+1)


et la stabilisation près du bord

jh(uh, vh) = σ

( ∑
(i,j)∈Jx

−ui−1,j + 2uij − ui+1,j
h

× −vi−1,j + 2vij − vi+1,j
h

+
∑

(i,j)∈Jy

−ui,j−1 + 2uij − ui,j+1
h

× −vi,j−1 + 2vij − vi,j+1
h

)
avec γ, σ > 0 et

Bx = {(i, j)| le segment (xi, yj)− (xi+1, yj) intersecte Γ et est non inclus dans Γ},

By = {(i, j)| le segment (xi, yj)− (xi, yj+1) intersecte Γ et est non inclus dans Γ},

Jx = {(i, j)|(xi, yj) ∈ Ω et [(xi−1, yj) 6∈ Ω ou (xi+1, yj) 6∈ Ω]},
et

Jy = {(i, j)|(xi, yj) ∈ Ω et [(xi, yj−1) 6∈ Ω ou (xi, yj+1) 6∈ Ω]}.

Introduisons maintenant quelques résultats intermédiaires, nécessaires pour prouver
les théorèmes 3.1 and 3.2. Le premier résultat est une adaptation du Lemme 3.3 de [28],
qui sera central dans la preuve de convergence.

Lemme 3.1. Il existe α1 ∈ (0, 1), α2 ∈ (0, 1/2) et β > 0 tels que∣∣∣∣u1 − u0
h

∣∣∣∣2 6 α1

∣∣∣∣u1 − u0
h

∣∣∣∣2 + α2

∣∣∣∣u2 − u1
h

∣∣∣∣2 + β

∣∣∣∣u0 − 2u1 + u2
h

∣∣∣∣2
pour tous u0, u1, u2 ∈ R.

Preuve. Pour tous a, b ∈ R et ε, δ > 0,

a2 ≤ |a|(|a− b|+ |b|) ≤ 1
2εa

2 + ε

2(|a− b|+ |b|)2

≤ 1
2εa

2 + ε

2b
2 + ε|a− b||b|+ ε

2(a− b)2

≤ 1
2εa

2 + ε

2(1 + δ)b2 + ε

2(1 + 1
δ

)(a− b)2.
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Pour ε = 3
4 et δ = 1

6, on a

a2 ≤ 2
3a

2 + 7
16b

2 + ε

2(1 + 1
δ

)(a− b)2,

ce qui entraîne la conclusion.

Lemme 3.2. Pour tout β > 0, il existe α ∈ (0, 1) tel que pour tous uij ∈ R

∣∣∣∣u10 − u00
h

∣∣∣∣2 +
∣∣∣∣u20 − u10

h

∣∣∣∣2 6 α

(∣∣∣∣u10 − u00
h

∣∣∣∣2 +
∣∣∣∣u20 − u10

h

∣∣∣∣2
)

+ β

(∣∣∣∣u11 − u01
h

∣∣∣∣2 +
∣∣∣∣u11 − u10

h

∣∣∣∣2 +
∣∣∣∣u01 − u02

h

∣∣∣∣2
+
∣∣∣∣u00 − 2u10 + u20

h

∣∣∣∣2 +
∣∣∣∣u00 − 2u01 + u02

h

∣∣∣∣2
)
. (3.7)

Preuve. Il est seulement nécessaire de prouver que pour tout β > 0, il existe α ∈ (0, 1)
tel que pour tout uij ∈ R

∣∣∣∣u10 − u00
h

∣∣∣∣2 +
∣∣∣∣u20 − u10

h

∣∣∣∣2 6 α

(∣∣∣∣u10 − u00
h

∣∣∣∣2 +
∣∣∣∣u20 − u10

h

∣∣∣∣2
)

+ β

(
α

∣∣∣∣u11 − u01
h

∣∣∣∣2 + α

∣∣∣∣u11 − u10
h

∣∣∣∣2 + α

∣∣∣∣u01 − u02
h

∣∣∣∣2
+
∣∣∣∣u00 − 2u10 + u20

h

∣∣∣∣2 +
∣∣∣∣u00 − 2u01 + u02

h

∣∣∣∣2
)
. (3.8)

En effet, le second membre de (3.8) est plus petit que celui de (3.7). On considère

α = sup
|u10 − u00|2 + |u20 − u10|2 − β

(
|u00 − 2u10 + u20|2 + |u00 − 2u01 + u02|2

)
|u10 − u00|2 + |u20 − u10|2 + β |u11 − u01|2 + β |u11 − u10|2 + β |u01 − u02|2

,

(3.9)
où

D := |u10 − u00|2 + |u20 − u10|2 + β |u11 − u01|2 + β |u11 − u10|2 + β |u01 − u02|2 6= 0.

Sans perte de généralité, on peut supposer que

|u10 − u00|2 + |u20 − u10|2 + β |u11 − u01|2 + β |u11 − u10|2 + β |u01 − u02|2 = 1 (3.10)

et ∑
i,j

uij = 0. (3.11)

En effet, si D 6= 1, on peut diviser tous les uij par D. De plus, il est possible de soustraire∑
i,j uij aux uij dans (3.9) sans changer la définition de α, et donc les uij peuvent être

choisis de sorte que (3.11) soit vérifiée. De plus, on a clairement α ≤ 1.
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Montrons que l’ensemble de uij vérifiant (3.10) et (3.11) est uniformément borné. On
note ūij = uij − u00 pour tout (i, j) 6= (0, 0). Alors, (3.10) peut s’écrire

|ū10|2 + |ū20 − ū10|2 + β |ū11 − ū01|2 + β |ū11 − ū10|2 + β |ū01 − ū02|2 = 1.

On en déduit que

|ū10| 6 1, |ū20| 6 2, |ū11| 6 1 + 1/β, |ū01| 6 1 + 2/β, |ū02| 6 1 + 3/β. (3.12)

En utilisant (3.11) et l’inégalité triangulaire,

|6u00| =

∣∣∣∣∣∣
∑
(i,j)

(uij − u00)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
(i,j)

ūij

∣∣∣∣∣∣ 6 6 + 6/β.

Ainsi, |u00| 6 1 + 1/β. De plus, en utilisant (3.12), |ūij | 6 2 + 3/β. Alors,

|uij | 6 3 + 4/β

pour tout (i, j).
Puisque l’ensemble de uij satisfaisant (3.10) et (3.11) est fermé, borné et de dimension

finie, le supremum dans la définition de α est atteint. On suppose que α = 1. Puisque
β 6= 0, il existe uij tel que

|u11 − u01|2 + |u11 − u10|2 + |u01 − u02|2 + |u00 − 2u10 + u20|2 + |u00 − 2u01 + u02|2 = 0.

On en déduit que u11 = u01 = u10 = u02, et donc

|u00 − 2u10 + u20|2 + |u00 − u10|2 = 0.

Finalement u00 = u10 = u20 ce qui est en contradiction avec (3.10).

Les lemmes 3.1 et 3.2 nous permettent de déduire la coercivité de la forme bilinéaire
ah :

Proposition 3.1 (Coercivité). Il existe c > 0 tel que, pour tout uh,

ah(uh, uh) > c|||uh|||2h,

où

|||uh|||h =
( 1
h2 |uh|

2
h,1,Ωh + bh(uh, uh) + jh(uh, uh)

)1/2
.

Dans la preuve suivante ainsi que dans le reste de ce chapitre, la notation suivante
sera utilisée : pour tout i, j,

uϕ(i,j)−(i+1,j) = ϕi,jui+1,j − ϕi+1,jui,j
ϕi,j − ϕi+1,j

. (3.13)
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u00 u10 u20

Γ Ω

Figure 3.2 – Cas Nj > 2 dans la preuve de la Proposition 3.1.

Preuve de la Proposition 3.1. Fixons l’indice j et supposons que les nœuds (xi, yj) ap-
partenant à Ωh sont pour i ∈ {Mj , . . . , Nj}. Sans perte de généralité, on peut supposer
que Mj = 0.
Cas Nj > 2 : On se place d’abord dans la situation représentée à la Figure 3.2.
On remarque que

Nj−1∑
i=1

(−ui−1,j + 2ui,j − ui+1,j)ui,j

= − (u0,j − u1,j)u0,j︸ ︷︷ ︸
(I)

+ (uNj−1,j − uNj ,j)uNj ,j︸ ︷︷ ︸
(II)

+
Nj−1∑
i=0
|ui+1,j − uij |2.

Commençons par estimer le terme (I). En utilisant la notation (3.13), on remarque que

u0,j =

√
ϕ2

0,j + ϕ2
1,j

ϕ0,j − ϕ1,j

u0,jϕ0,j − u0,jϕ1,j√
ϕ2

0,j + ϕ2
1,j

=

√
ϕ2

0,j + ϕ2
1,j

ϕ0,j − ϕ1,j

uϕ(0,j)−(1,j) + ϕ0,j√
ϕ2

0,j + ϕ2
1,j

(u0,j − u1,j)

 . (3.14)

Puisque ϕ0,j ≥ 0 et ϕ1,j < 0, on a

0 6
ϕ0,j√

ϕ2
0,j + ϕ2

1,j
< 1 et

√
ϕ2

0,j + ϕ2
1,j

ϕ0,j − ϕ1,j
≤ 1. (3.15)

Alors,
(I) ≤ |(u0,j − u1,j)uϕ(0,j)−(1,j)|+ (u0,j − u1,j)2.

De plus, en utilisant l’inégalité de Young avec ε > 0 et le Lemme 3.1 avec α1 ∈ (0, 1),
α2 ∈ (0, 1/2) et β > 0, on observe que

(I) ≤ 1
2ε(uϕ(0,j)−(1,j))

2 +
(

1 + ε

2

)
(u0,j − u1,j)2

6
1
2ε(uϕ(0,j)−(1,j))

2 +
(

1 + ε

2

)
(α1|u1,j − u0,j |2 + α2|u2,j − u1,j |2)

+
(

1 + ε

2

)
β|u2 − 2u1 + u0|2.
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De façon similaire,

(II) 6 1
2ε(uϕ(Nj−1,j)−(Nj ,j))

2

+
(

1 + ε

2

)
(α1|uNj−1,j − uNj ,j |2 + α2|uNj−2,j − uNj−1,j |2)

+
(

1 + ε

2

)
β|uNj−2 − 2uNj−1 + uNj |2.

Puisque Nj > 2, en notant α = max{α1, 2α2}, on a

Nj−1∑
i=1

(−ui−1,j + 2ui,j − ui+1,j)ui,j
h2 >

(
1− α

(
1 + ε

2

))Nj−1∑
i=0

∣∣∣∣ui+1,j − uij
h

∣∣∣∣2

− 1
2ε

Nj−1∑
i=0

(uϕ(i,j)−(i+1,j))
2

h2 −
(

1 + ε

2

)
β

Nj−1∑
i=1

∣∣∣∣−ui−1,j + 2uij − ui+1,j
h

∣∣∣∣2 .

u10

u01 u11

u02

u00 u20

Ω

Γ

Figure 3.3 – Cas Nj = 2 dans la preuve de la Proposition 3.1.

Cas Nj = 2 : On a :

(−u0,j + 2u1,j − u2,j)u1,j

= −(u0,j − u1,j)u0,j + (u1,j − u2,j)u2,j + |u1,j − u0j |2 + |u2,j − u1j |2

≤ |(u0,j − u1,j)uϕ(0,j)−(1,j)|+ (u0,j − u1,j)2 + |(u2,j − u1,j)uϕ(1,j)−(2,j)|+ (u2,j − u1,j)2.

On a également (x0, yj), (x2, yj) 6∈ Ω et (x1, yj) ∈ Ω. Le cercle contenant (0, 0), (2h, 0),

(0, 2h) est de rayon
√

10
2 h. Alors, puisque Ω est r-smooth, pour h < 2r√

10
, sans perte

de généralité, on peut supposer que l’on se trouve dans la situation représentée à la
Figure 3.3. Ainsi, d’après le Lemme 3.2, on obtient la même conclusion que dans le cas
précédent.
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Conclusion : En combinant les deux cas,

ah(uh, uh) >
(

1− α
(

1 + ε

2

))∑
i,j

∣∣∣∣ui+1,j − uij
h

∣∣∣∣2 +
∑
j,i

∣∣∣∣ui,j+1 − uij
h

∣∣∣∣2


+
(

1− 1
2εγ

)
bh(uh, uh) +

(
1−

(
1 + ε

2

)
β

σ

)
jh(uh, uh),

ce qui donne le résultat désiré, en prenant ε tel que α
(
1 + ε

2
)
< 1 et γ, σ suffisamment

grands.

Remarque 3.3. Comme vu précédemment dans la preuve, l’hypothèse du Théorème 3.1
peut être remplacée par les deux hypothèses suivantes :

• Si (xi+1, yj), (xi−1, yj) 6∈ Ω et (xi, yj) ∈ Ω alors, il existe k, l ∈ {−1, 1} tel que
(xi+k, yj+l), (xi+k, yj+2l), (xi, yj+l) ∈ Ω.

• Si (xi, yj+1), (xi, yj−1) 6∈ Ω et (xi, yj) ∈ Ω alors, il existe k, l ∈ {−1, 1} tel que
(xi+k, yj+l), (xi+2k, yj+l), (xi+k, yj) ∈ Ω.

Pour la preuve du Théorème 3.1, nous aurons également besoin de l’inégalité de
Poincaré suivante :

Lemme 3.3. Il existe CP > 0 tel que pour tout vh = (vij)ij,

‖vh‖2h,∞,Ωh + ‖vh‖2h,0,Ωh ≤ CP
(
|vh|2h,1,Ωh + h3bh(vh, vh)

)
.

Preuve. Fixons l’indice j et supposons que le premier et le dernier (xi, yj) appartenant à
Ωh sont pour i ∈ {Mj , . . . , Nj}. Sans perte de généralité, on peut supposer Mj = 0. Pour
tout i, on a

vij = v0j +
i−1∑
k=0

(vk+1,j − vkj).

Alors,

v2
ij ≤ 2v2

0j + 2(i− 1)
i−1∑
k=0

(vk+1,j − vkj)2.

En notant L le maximum des diamètres de Ωh (i.e. la plus grande distance entre deux
points de Ωh), Nj 6 CL/h (C > 0), on en déduit que

Nj∑
i=0

v2
ij ≤ 2CL

h
v2

0j + 2C2L
2

h2

Nj−1∑
i=0

(vi+1,j − vij)2.

En utilisant (3.14) et (3.15),

v2
0,j ≤ 2(uϕ(i,j)−(i+1,j))

2 + 2(v0,j − v1,j)2,

ce qui donne la conclusion.
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Preuve du Théorème 3.1. Démontrons maintenant le Théorème 3.1. Premièrement, on
remarque qu’il existe C0 > 0 tel que pour tout f ∈ C2(Ω) et tout h < h0 avec h0 > 0, il
existe une extrapolation ũ ∈ C4 de la solution u de (1.1) telle que

‖ũ‖C4(Ωh) 6 C0‖u‖C4(Ω).

Soit ũ une telle extrapolation. On note f̃ = −∆ũ et Ũ = (ũij)ij = (ũ(xi, yj))ij . Enfin, on
note eij = ũij − uij et eh = (eij)ij . D’après la Proposition 3.1,

|||eh|||2h ≤
1
c
ah(eh, eh).

Puisque uh est solution de (3.1),

ah(uh, eh) =
∑
ij

fijeij .

Alors,

ah(eh, eh) = −
∑

i,j|(xi,yj)∈Ω

(
−4ũij − ũi−1,j − ũi+1,j − ũi,j−1 − ũi,j+1

h2 − fij
)
eij

︸ ︷︷ ︸
(I)

+ bh(Ũ , eh)︸ ︷︷ ︸
(II)

+ jh(Ũ , eh)︸ ︷︷ ︸
(III)

.

Estimons chacun des termes :
Terme (I) : En utilisant l’inégalité de Cauchy-Schwarz,

(I) 6
√√√√ ∑
i,j|(xi,yj)∈Ω

(
−4ũij − ũi−1,j − ũi+1,j − ũi,j−1 − ũi,j+1

h2 − fij
)2
×
√ ∑
i,j|(xi,yj)∈Ω

e2
ij .

Il existe (ξi, νj) ∈ [xi − h, xi + h]× [yj − h, yj + h] tels que

−4ũij − ũi−1,j − ũi+1,j − ũi,j−1 − ũi,j+1
h2 = fij −

h2

12

(
∂4ũ

∂x4 (ξi, yj) + ∂4ũ

∂y4 (xi, νj)
)
.

Puisque le nombre de nœuds dans Ωh est d’ordre 1/h2, on déduit√√√√ ∑
i,j|(xi,yj)∈Ω

(
−4ũij − ũi−1,j − ũi+1,j − ũi,j−1 − ũi,j+1

h2 − fij
)2

6

√
1
h2 ×

h4

122 ‖u‖
2
C4(Ω) 6 Ch‖u‖C4(Ω).

De plus, d’après le Lemme 3.3,∑
i,j|(xi,yj)∈Ω

e2
ij = 1

h2 ‖eh‖
2
h,0,Ωh ≤ CP

( 1
h2 ‖eh‖

2
h,1,Ωh + hbh(eh, eh)

)
≤ C|||eh|||2h.



3.3. PREUVES DES THÉORÈMES DE CONVERGENCE 95

Alors,
(I) ≤ Ch‖u‖C4(Ω)|||eh|||h.

Terme (II) : On considère w := ũ/ϕ. Soit (xi, yj) ∈ ∂Ωh tel que (xi+1, yj) ∈ Ω.
En utilisant les inégalités de Sobolev et de Hardy (cf. [28]),

‖w‖C1([xi,xi+1]) 6 C‖w‖2,[xi,xi+1] 6 C‖ũ‖3,[xi,xi+1].

Ainsi∣∣∣∣∣∣ϕ(i+1)j ũi,j − ϕij ũi+1,j√
ϕ2

(i+1)j + ϕ2
ij

∣∣∣∣∣∣ ≤
∣∣∣∣∣ ϕ(i+1)jϕij

min{|ϕ(i+1)j |, |ϕij |}

∣∣∣∣∣ |w(xi, yi)− w(xi+1, yj)|

≤ max{|ϕij |, |ϕi+1,j |}|w(xi, yi)− w(xi+1, yj)|
≤ Ch‖ϕ‖L∞([xi,xi+1])‖w‖C1([xi,xi+1]) ≤ Ch2‖ũ‖3,[xi,xi+1].

Puisque le nombre de faces où la ghost penalty est appliquée est d’ordre CL
h ,

(II) 6 bh(Ũ , Ũ)1/2bh(eh, eh)1/2

6
C

h


√√√√√ ∑

(i,j)∈Bx

∣∣∣∣∣∣ϕ(i+1)j ũi,j − ϕij ũi+1,j√
ϕ2

(i+1)j + ϕ2
ij

∣∣∣∣∣∣
2

+

√√√√√ ∑
(i,j)∈By

∣∣∣∣∣∣ϕi(j+1)ũi,j − ϕij ũi(j+1)√
ϕ2
i(j+1) + ϕ2

ij

∣∣∣∣∣∣
2
 |||eh|||h

6 C
√
h‖ũ‖3,Ωh |||eh|||h.

Terme (III) : Une nouvelle fois, puisque le nombre de faces où la ghost penalty est
appliquée est d’ordre CL

h ,

∑
(i,j)∈Jx

−ũi−1,j + 2ũij − ũi+1,j
h

× −ei−1,j + 2eij − ei+1,j
h

6 Ch‖ũ‖C2(Ωh)
∑

(i,j)∈Jx

∣∣∣∣−ei−1,j + 2eij − ei+1,j
h

∣∣∣∣
6 Ch1/2‖ũ‖C2(Ωh)

 ∑
(i,j)∈Jx

∣∣∣∣−ei−1,j + 2eij − ei+1,j
h

∣∣∣∣2
1/2

.

Ainsi,
(III) ≤ Ch1/2‖ũ‖C2(Ωh)|||eh|||h.

En combinant cela avec le Lemme 3.3,on obtient,

‖eh‖h,1,Ω 6 h|||eh|||h 6 Ch3/2‖u‖C4(Ω).

Enfin, en utilisant une nouvelle fois le Lemme 3.3, on obtient les estimations L∞ et
L2.

Démontrons maintenant le Théorème 3.2.
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Preuve du Théorème 3.2. D’après la Proposition 3.1 et le Lemme 3.3,

ah(vh, vh) ≥ C
∑

(i,j):(xi,yj)∈Ωh

v2
ij .

De plus, grâce à l’expression de ah,

ah(vh, vh) ≤ C

h2

∑
(i,j):(xi,yj)∈Ωh

v2
ij ,

ce qui mène à la conclusion.

3.4 Schéma alternatif

Dans cette section, nous proposons une version alternative du schéma (3.1), plus
complexe mais offrant un ordre de convergence numérique optimal pour la norme H1.

En 2D, on considère le schéma suivant : trouver une fonction discrète uh = (uij)ij
définie sur Ωh telle que

ãh(uh, vh) = lh(vh), (3.16)

pour toute fonction discrète vh = (vij)ij définie sur Ωh, où

ãh(uh, vh) = (−∆huh, vh) + b̃h(uh, vh) + j̃h(uh, vh),

avec

b̃h(uh, vh) = γ

2h2

∑
ij

uϕ(i−1,j)−(i+1,j) × v
ϕ
(i−1,j)−(i+1,j)

4ϕ2
i+1,jϕ

2
i−1,j + ϕ2

ijϕ
2
i−1,j + ϕ2

ijϕ
2
i+1,j

+
∑
ij

uϕ(i,j−1)−(i,j+1) × v
ϕ
(i,j−1)−(i,j+1)

4ϕ2
i,j+1ϕ

2
i,j−1 + ϕ2

ijϕ
2
i,j−1 + ϕ2

ijϕ
2
i,j+1


et

uϕ(i−1,j)−(i+1,j) := 2ϕi+1ϕi−1ui − ϕiϕi−1ui+1 − ϕiϕi+1ui−1,

uϕ(i,j−1)−(i,j+1) et v
ϕ
(i,j−1)−(i,j+1) sont définis de manière similaire, et le second terme de

stabilisation est donné par

j̃h(uh, vh) = σ

(∑
i,j

−ui−1,j + 3uij − 3ui+1,j + ui+2,j
h

×−vi−1,j + 3vij − 3vi+1,j + vi+2,j
h

+
∑
i,j

−ui,j−1 + 3uij − 3ui,j+1 + ui,j+2
h

× −vi,j−1 + 3vij − 3vi,j+1 + vi,j+2
h

)
. (3.17)

Les indices (i, j) dans les sommes sont choisis de sorte que tous les nœuds (i− 1, j),
(i, j), (i + 1, j) et (i + 2, j) appartiennent à Ω sauf 1. De même pour (i, j − 1), (i, j),
(i, j + 1) et (i, j + 2).
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Remarque 3.4. Ce schéma est donné en 2D pour des raisons de lisibilité mais est toujours
valable en 3D, en ajoutant les termes correspondant au troisième indice. Des résultats
numériques en 2D et en 3D pour ce schéma seront donnés en Section 3.5. Pour ce schéma
nous ne proposons pas de résultat de convergence théorique, mais il pourrait être étudié
dans une future contribution.

Il est important de préciser comment le terme de pénalisation b̃h est obtenu.
En supposant que u = pϕ avec p = p0 + p1(x− xi) et uij = u(xi, yj), alors

ui+1,j = (p0 + p1h)ϕi+1,j ,

uij = p0ϕij ,

ui−1,j = (p0 − p1h)ϕi−1,j ,

ce qui donne
uϕ(i−1,j)−(i+1,j) = 0.

En ce qui concerne le terme de stabilisation (3.17), ∂xu(xi, yi) peut être approchée à
l’ordre 2 par

u(xi+1, yi)− u(xi−1, yi)
2h et −3u(xi, yi) + 4u(xi+1, yi)− u(xi+2, yi)

2h ,

ce qui donne le saut de ∂xu(xi, yi)

−u(xi+1, yi) + 3u(xi, yi)− 3u(xi+1, yi) + u(xi+2, yi)
2h .

Ainsi, (3.17) est une approximation de (3.6).

3.5 Résultats numériques

Dans cette section, nous allons comparer les deux schémas aux différences finies (3.1)
et (3.16) avec d’autres approches :

• ϕ-FEM : pour illustrer l’intérêt de notre nouvelle approche, il est important de la
comparer numériquement à ϕ-FEM. Pour cela, nous utiliserons le schéma (1.10),
afin d’illustrer les avantages et inconvénients des méthodes éléments finis par rapport
aux approches différences finies ;

• une méthode éléments finis classique : nous comparerons aussi les résultats avec
une méthode éléments finis standard conforme (cf. Section 1.1.1, (1.3)) ;

• l’approche Shortley-Weller : finalement, nous comparerons notre méthode à la
littérature. Pour cela, nous avons implémenté la méthode Shortley-Weller (SW) [91,
9]. Cette méthode a le même objectif, qui est de traiter les géométries complexes avec
des différences finies. Cependant, la matrice associée n’est ici pas bien conditionnée.
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Les schémas présentés en Sections 3.1 et 3.4 seront respectivement notés ϕ-FD et
ϕ-FD2. Les schémas ϕ-FEM utilisés sont implémentés en FEniCS (cf. [60]) et les schémas
différences finies à l’aide des librairies python classiques : scipy 1 [88] et numpy 2 [45].

Les codes permettant de reproduire les différents résultats sont disponibles à :

https://github.com/PhiFEM/PhiFD.git

Puisque la solution de ϕ-FD est définie seulement aux nœuds (xi, yj)ij et les solutions
calculées avec FEM ou SW le sont uniquement sur Ω, les solutions ϕ-FEM et Standard-
FEM seront interpolées aux nœuds (xi, yj)ij appartenant à Ω. Les erreurs relatives seront
calculées dans les normes ‖ · ‖h,0, ‖ · ‖h,∞ et ‖ · ‖h,1 définies en Section 3.1.

Il est important de préciser que cette manière de calculer les erreurs pour les méthodes
éléments finis peut détériorer les résultats en comparaison à la manière habituelle de
le faire. Cependant, cette méthode permet de comparer équitablement les différents
schémas.

3.5.1 Premier cas test : un exemple 2D

On considère la solution explicite

u = cos
(
π

2 r
)

sur le disque centré en (0.5, 0.5) de rayon R = 0.3 + 1e− 10, avec

r = 1
R

√
(x− 0.5)2 + (y − 0.5)2 .

Ce choix de rayon permet de s’assurer que la frontière exacte coupe une face proche d’un
nœud. Dans ce cas, l’approche SW sera mal conditionnée.

Pour le schéma ϕ-FD, l’ordre de convergence théorique de 3/2 est atteint pour la
norme H1 et on observe une convergence d’ordre 2 pour les normes L2 et L∞ (cf. Figures
3.4 et 3.5, gauche et Table 3.1). Le second schéma, ϕ-FD2, semble moins précis sur des
grilles grossières mais légèrement meilleur pour des résolutions plus fines. De plus, l’ordre
de convergence optimal quadratique est atteint, en particulier pour la norme H1. Le
conditionnement de la matrice est également optimal avec un ordre 1/h2 (cf. Figure 3.5,
droite). Le code python fait moins de 100 lignes (cf. Annexe A.1) et n’utilise que les
librairies scipy et numpy, ce qui permet un faible temps de calcul (cf. Figure 3.6).

Sur ces figures, il apparaît que ϕ-FEM et ϕ-FD ont toutes deux des intérêts dans la
résolution d’EDP. En effet, alors que les erreurs en normes L2 et L∞ sont relativement
proches pour les deux méthodes, l’erreur H1, le conditionnement ou le temps de calcul
sont très différents 3 : l’approche ϕ-FD est bien plus rapide que l’approche éléments finis,
tandis qu’elle conduit à une erreur légèrement plus élevée sur les dérivées de la solution.

1. https://scipy.org/
2. https://numpy.org/
3. Il est important de prendre en compte ici que les résultats des méthodes éléments finis ont été

obtenus avec FEniCS, qui comme nous l’avons déjà précisé précédemment est moins optimisé que la
version FEniCSX.

https://github.com/PhiFEM/PhiFD.git
https://scipy.org/
https://numpy.org/
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Figure 3.4 – Premier cas test : un exemple 2D. Erreurs relatives L2 (gauche)
et L∞ (droite) en fonction de la taille de discrétisation pour ϕ-FEM, Standard FEM,
Shortley-Weller, ϕ-FD et ϕ-FD2.
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Figure 3.5 – Premier cas test : un exemple 2D. Erreur relative H1 (gauche) et
conditionnement (droite) en fonction de la taille de discrétisation pour ϕ-FEM, standard
FEM, Shortley-Weller, ϕ-FD et ϕ-FD2.

ϕ-FEM Std FEM SW ϕ-FD ϕ-FD2
Erreur L2 relative 2.04 2.0 2.01 2.05 1.93
Erreur L∞ relative 1.98 1.94 1.95 1.96 1.95
Erreur H1 relative 2.02 1.17 1.82 1.83 1.98

Table 3.1 – Premier cas test : un exemple 2D. Ordres de convergence.

De plus, pour les deux schémas ϕ-FD, on observe le même phénomène de supraconvergence,
comme pour la méthode Shortley-Weller. L’ordre de convergence pour la norme H1 est
plus élevé que pour les approches éléments finis : O(h3/2) contre O(h).
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Figure 3.6 – Premier cas test : un exemple 2D. Temps de calcul en fonction de
l’erreur relative L2 (gauche) et de l’erreur relative H1 (droite) pour ϕ-FEM, standard
FEM, Shortley-Weller, ϕ-FD et ϕ-FD2.

Pour conclure ce cas test et notamment justifier notre choix des paramètres σ et γ,
l’évolution de l’erreur relative L2 et du conditionnement en fonction de ces paramètres
est représentée à la Figure 3.7. Ces résultats entraînent le choix de σ = 0.01 pour les
deux schémas et de γ = 1 pour le premier ϕ-FD et γ = 10 pour le second schéma.
On remarque à la Figure 3.7 que l’erreur relative L2 du second schéma est plus stable
aux variations de σ que celle du premier schéma ϕ-FD, ce qui s’explique par la présence
du terme j̃h d’ordre 2.

3.5.2 Second cas test : un exemple 3D

On considère maintenant une extension 3D du cas test précédent, i.e. la même solution
explicite, dans une sphère centrée en (0.5, 0.5, 0.5), de rayon R = 0.3 et

r = 1
R

√
(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 .

Dans ce cas également, l’ordre de convergence optimal quadratique est observé en
normes L2 et H1 (cf. Fig. 3.8). De plus, nos deux schémas différences finies ainsi que
l’approche Shortley-Weller donnent de meilleurs résultats que les approches éléments
finis. Il est intéressant de noter qu’ici aussi l’approche ϕ-FEM devient aussi précise en
norme H1 que l’approche différences finies lorsque la taille de discrétisation diminue.
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Figure 3.7 – Premier cas test : un exemple 2D. Haut : évolution de l’erreur relative
L2 (gauche) et du conditionnement (droite), en fonction de σ, avec γ = 1 pour ϕ-FD
(traits pleins) et γ = 10 pour ϕ-FD2 (pointillés). Bas : évolution de l’erreur relative
L2 (gauche) et du conditionnement (droite), en fonction de γ, avec σ = 0.01 pour ϕ-FD
(traits pleins) et pour ϕ-FD2 (pointillés).

3.5.3 Troisième cas test : combinaison avec une approche multigrid

Un autre avantage des grilles cartésiennes est leur compatibilité avec les solveurs
multigrilles (multigrid, [1]) de sorte à améliorer la stabilité et le temps de calcul de la
méthode. La méthode multigrid est basée sur la combinaison de schémas de relaxation et
d’une hiérarchie particulière de grilles grossières.
Après avoir appliqué une méthode de relaxation sur la grille la plus fine, un terme de
correction est obtenu en représentant les résidus interpolés sur la grille grossière suivante
et en utilisant une méthode de relaxation. De manière récursive, une hiérarchie de grilles
est obtenue et l’algorithme est arrêté lorsque le problème est sur une grille suffisamment
grossière, permettant une résolution directe. Dans [34], une description de plusieurs
méthodes itératives est proposée : la méthode de Seidel, de Richardson, de Young ou
encore une méthode de relaxation ou de minimisation des résidus.
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Figure 3.8 – Second cas test : un exemple 3D. Erreurs relatives L2 (gauche)
et H1 (droite) en fonction de la taille de discrétisation pour ϕ-FEM, standard FEM,
Shortley-Weller, ϕ-FD et ϕ-FD2.

On trouve également une description d’une méthode multigrid pour résoudre l’équation
de Poisson sur des domaines généraux avec des exemples numériques dans [41]. Deux
composantes importantes des méthodes multigrid sont les opérateurs de restriction et de
prolongement qui permettent de transférer les informations entre les différentes grilles.
Dans [78], une « sommation par parties » est utilisée, préservant les opérateurs d’interpo-
lation, ce qui permet des approximations précises et stables sur les grilles grossières.
Nous allons maintenant proposer une technique similaire à l’approche multigrid permet-
tant un bon compromis entre temps de calcul et erreur.

Pour cela, nous proposons une combinaison de notre schéma ϕ-FD (3.1) avec une
approche multigrid. L’idée est d’utiliser la solution ϕ-FD obtenue sur une grille grossière,
avec un solveur direct, pour initialiser un solveur itératif à une résolution plus fine.
L’algorithme sera décomposé en 3 étapes :

1. Étape 1 : résolution directe sur grille grossière. On résout une première fois
le problème sur une grille grossière Nn

0 , obtenant une solution ϕ-FD grossière u0,
avec un solveur direct.

2. Étape 2 : interpolation sur une grille fine. On considère u1 l’interpolation
par splines (d’ordre 2) de u0 sur une grille fine donnée Nn

obj avec Nobj >> N0.

3. Étape 3 : résolution itérative sur une grille fine. On calcule une solution
ϕ-FD u2 sur la grille fine avec un solveur itératif initialisé à u1.

Dans le cas 2D, nous comparerons cet algorithme avec les deux méthodes suivantes :
• Méthode directe : résolution du problème avec un solveur direct sur des grilles

de résolutions N0 ×N0, puis interpolation de la solution sur la grille fine Nn
obj.

Le solveur utilisé ici est le solveur standard de scipy, i.e. un solveur LU.
• Méthode itérative : la même méthodologie est appliquée, cette fois avec un

solveur itératif, le Gradient BiConjugué Stabilisé.
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En 3D, notre méthode sera uniquement comparée à une méthode itérative. Les cas
considérés seront les exemples 2D et 3D présentés dans les sous-sections précédentes. La
résolution Nobj sera fixée à 2200 en 2D et 200 en 3D. Tous les solveurs itératifs ont la
même tolérance pour les résidus intérieurs relatifs, fixée à 10−4.

Tous les solveurs itératifs compatibles de la librairie python scipy ont été testés mais
le Gradient BiConjugué Stabilisé 4 a toujours donné les meilleurs résultats.
Il est d’ailleurs important de noter que le simple gradient conjugué ne peut pas être
utilisé ici puisque la matrice A n’est pas symétrique.

Remarque 3.5. • Un point intéressant est qu’il est possible avec cette approche,
d’ajouter une étape intermédiaire, avec une première résolution itérative sur une
grille de résolution N0 < N1 < Nobj, afin de réduire le nombre d’itérations néces-
saires lors de la résolution la plus fine. Cependant, sur les cas tests proposés dans
cette section, cette approche n’a pas été nécessaire. De plus, ajouter une telle étape
augmente le nombre de paramètres à déterminer : tolérance et nombre maximal
d’itérations du solveur intermédiaire, taille de la grille intermédiaire, paramètres de
l’interpolation intermédiaire.

• Si un schéma ϕ-FD est développé dans le futur pour résoudre des problèmes non-
linéaires, cette approche pourra être appliquée aux itérations d’un algorithme de
Newton.

• Dans la Section 5.2, nous proposerons une adaptation de cette idée à la méthode
ϕ-FEM pour différents problèmes, notamment non-linéaires.
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Figure 3.9 – Troisième cas test : approche multigrid. Temps de calcul en fonction
de l’erreur relative L2 pour les méthodes directe, itérative et multigrid, dans le cas 2D
(gauche) et 3D (droite).

Les résultats de la Figure 3.9 (gauche) illustrent l’efficacité de notre approche par
rapport aux deux autres méthodes de base : en effet, on atteint une meilleure précision
(grâce au solveur itératif final) plus rapidement puisque seulement quelques itérations du

4. https ://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.bicgstab.html
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solveur final sont nécessaires. Sur la Figure 3.9, pour les méthodes « baseline » (discrète et
itérative), les valeurs correspondent à la discrétisation utilisée pour la résolution et pour
la méthode multigrid, elles correspondent à la discrétisation utilisée pour la résolution
grossière. Puisque nous avons choisi d’utiliser l’approche multigrid avec une interpolation
de f et de ϕ de la résolution fine vers la résolution grossière, les temps de calcul ne
comportent que les temps de résolution du système linéaire et le temps d’interpolation
de u de la résolution N0 à Nobj pour l’approche multigrid.

Comme dit précédemment, un des problèmes de ϕ-FD, et de toutes les méthodes
différences finies, est la croissance de la taille du système linéaire à résoudre, en particulier
en 3D : la matrice A contient (N+1)6 valeurs pour une résolution N . Ainsi, il sera presque
toujours nécessaire d’utiliser des solveurs itératifs pour résoudre de tels problèmes avec
ces approches. Cependant, utiliser un solveur itératif sans solution initiale pour N = 200
revient à résoudre un problème avec une matrice A contenant plus de 1013 valeurs.
Alors, même en utilisant le fait que la matrice est creuse, on obtient un énorme système,
extrêmement long à résoudre. Comme illustré à la Figure 3.9 (droite), notre approche
permet d’obtenir les résultats de tels problèmes beaucoup plus vite que l’approche naïve,
la méthode itérative présentée précédemment.

3.6 Conclusion
Dans ce chapitre, nous avons proposé une nouvelle méthode aux différences finies

inspirée par l’approche ϕ-FEM précédemment présentée, pour la résolution d’EDP
elliptiques sur des géométries complexes. La méthode offre différents avantages : les
matrices produites par la méthode sont bien conditionnées, ce qui assure une stabilité
numérique de la méthode. De plus, le schéma principal proposé atteint des convergences
quasi-optimales, comparables aux autres méthodes de la littérature. Enfin, cette nouvelle
méthode a l’intérêt d’être compatible avec des approches de type multigrid, ce qui a
l’avantage d’améliorer fortement les temps de calcul.
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Résumé

Dans ce chapitre, nous proposons une méthode pour résoudre des
équations aux dérivées partielles (EDP) en combinant des techniques de
Machine Learning et la méthode ϕ-FEM. Pour cela, nous utilisons le
Fourier Neural Operator (FNO). L’objectif de ce chapitre est d’introduire
cette combinaison et d’illustrer numériquement son intérêt. Nous nous
concentrerons ici sur la résolution de deux équations : l’équation de
Poisson-Dirichlet et les équations de l’élasticité non linéaire.

L’idée clé de notre méthode est de traiter le scénario complexe des
domaines variables, où chaque problème est résolu sur une géométrie
différente. Les domaines considérés sont définis par des fonctions level-set
en raison de l’utilisation de l’approche ϕ-FEM. Nous présenterons dans
un premier temps le FNO puis nous expliquerons notre approche. Nous
proposerons ensuite deux autres méthodes : ϕ-FEM-UNet et Standard-
FEM-FNO, combinant réseaux de neurones et méthodes éléments finis.
Enfin, nous illustrerons l’efficacité de cette combinaison avec des résultats
numériques sur trois cas tests.
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neurones

4.1 La méthodologie ϕ-FEM-FNO . . . . . . . . . . . . . . . . . . . . . . 107
4.1.1 Idée générale . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.1.2 L’opérateur “ground truth” . . . . . . . . . . . . . . . . . . . 107
4.1.3 Structure du FNO . . . . . . . . . . . . . . . . . . . . . . . . 108
4.1.4 Choix de la loss function . . . . . . . . . . . . . . . . . . . . . 112

4.2 Trois autres approches . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.2.1 La méthode Geo-FNO . . . . . . . . . . . . . . . . . . . . . . 114
4.2.2 La combinaison ϕ-FEM-UNet . . . . . . . . . . . . . . . . . . 114
4.2.3 La méthode Standard-FEM-FNO . . . . . . . . . . . . . . . . 115

4.3 Détails d’implémentation . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.4 Simulations numériques . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.4.1 L’équation de Poisson-Dirichlet sur des ellipses aléatoires . . . 119

105



106
CHAPITRE 4. LES MÉTHODES ÉLÉMENTS FINIS COMBINÉES AUX RÉSEAUX

DE NEURONES

4.4.2 Second cas test : problème de Poisson sur des géométries
complexes aléatoires . . . . . . . . . . . . . . . . . . . . . . . 125

4.4.3 Déformation d’une plaque 2D trouée . . . . . . . . . . . . . . 128
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Comme nous l’avons vu dans ce manuscrit, les méthodes éléments finis permettent
de résoudre des EDP de manière précise. Cependant, dans certaines applications, il est
nécessaire de résoudre ces équations en temps réel ce qui, comme nous l’avons vu n’est
pas le cas pour les méthodes classiques. Pour obtenir des résultats en temps réel, de
nombreuses méthodes de Machine-Learning ont été développées. Ces méthodes peuvent
être séparées en deux groupes :

1. Les méthodes physics-based : une des possibilités pour approcher des solutions
d’EDP est de minimiser les résidus de l’équation ou la fonctionnelle d’énergie
associée à l’équation considérée. Ces méthodes ont alors l’avantage de ne pas
nécessiter des approximations obtenues par exemple par des méthodes éléments
finis. La méthode la plus populaire de cette catégorie est la méthode PINNs [76]
mais on peut également trouver des méthodes telles que les méthodes Deep Ritz
[29] ou Deep Galerkin [83]. Cependant, malgré la promesse initiale de ces méthodes,
on trouve maintenant de nombreuses illustrations numériques indiquant que ces
méthodes ne sont pas meilleures que les méthodes classiques tant en termes de
temps de calcul que de précision, par exemple dans [40].

2. Les méthodes data-based : une seconde catégorie regroupe les méthodes utilisant des
méthodes type éléments finis pour générer une base de données, permettant alors
d’entraîner un réseau de neurones. Cette étape d’entraînement, bien que lourde en
termes de calcul et de temps, peut être faite en amont des simulations, pendant
une étape préparatoire. L’intérêt est alors de pouvoir obtenir la solution pour
de nouvelles données de manière quasi-instantanée. De nombreux exemples tels
que U-Net (voir par exemple [77]), les Graph Neural Operator [57], les DeepOnet
[61] et les Fourier Neural Operator (FNO) [58, 56] ont démontré de très bonnes
performances.

Dans ce chapitre, nous allons principalement nous concentrer sur le FNO qui s’est
montré supérieur aux autres méthodes en rapport coût-précision (cf. [58]). L’inconvénient
des FNO est la nécessité de grilles cartésiennes afin d’effectuer des FFT (Fast Fourier
Transform), ce qui limite l’implémentation initiale à des problèmes posés sur des domaines
rectangulaires. Plusieurs approches ont été proposées pour adapter la méthode à des
géométries plus générales, par exemple l’approche Geo-FNO [56] où le domaine d’entrée
est déformé en un maillage uniforme latent sur lequel les FFT peuvent être appliquées.
Nous proposons ici une approche alternative : la géométrie sera encodée par une fonction
level-set et associée aux autres données du problème. Cela nous permettra alors d’utiliser
la méthode ϕ-FEM pour générer des données.
Nous allons détailler notre nouvelle méthode ϕ-FEM-FNO et la comparer notamment
à deux autres approches : ϕ-FEM-UNet et Standard-FEM-FNO, ce qui permettra de
justifier l’utilisation du FNO par rapport à un autre réseau ainsi que l’utilisation de
ϕ-FEM par rapport à une méthode standard.
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Nous nous concentrerons ici sur la résolution de deux équations, posées sur des
géométries complexes : l’équation de Poisson avec conditions de Dirichlet{

−∆u = f , dans Ω ,

u = g , sur Γ ,
(4.1)

et les équations de l’élasticité non-linéaire :
−div Π(u) = f , dans Ω ,

u = uD , sur ΓD ,
Π(u) · n = t , sur ΓN ,

(4.2)

avec Ω un domaine de Rd, d = 1, 2, 3, de frontière Γ = ΓD ∪ ΓN avec ΓD ∩ ΓN = ∅ pour
(4.2).

4.1 La méthodologie ϕ-FEM-FNO
Dans cette section, nous avons choisi de nous concentrer sur le cas de l’équation de

Poisson (4.1) afin de simplifier les écritures et notations utilisées. Les différences liées au
passage à l’équation (4.2) seront présentées en préambule du cas test numérique associé
à la résolution de cette équation.

4.1.1 Idée générale

Notre idée est de construire un réseau de neurones qui sera une approximation de
l’opérateur qui associe les données f et g ainsi que la géométrie du problème à la solution
u de (4.1). On souhaite que la solution obtenue soit précise mais, obtenue avec un coût
de calcul limité, en particulier le plus rapidement possible. L’objectif est d’entraîner ce
réseau à l’aide de données synthétiques générées par un solveur discret (par exemple
une méthode éléments finis classique, ou ϕ-FEM). Dans cette section, nous utiliserons
ϕ-FEM comme méthode de génération de données.

Pour cette approche, nous avons choisi d’utiliser le Fourier Neural Operator, introduit
dans [58] et [52], reposant sur une architecture itérative proposée dans [57]. Ce choix
a été motivé par plusieurs raisons : dans le cas de l’approximation de solutions d’EDP,
les auteurs de [58] ont illustré que les performances du FNO étaient meilleures que de
nombreuses autres approches. De plus, les FNOs pourront être utilisés pour différentes
équations sans grande modification de l’architecture. Enfin, les FNO et ϕ-FEM sont
compatibles puisque les deux méthodes utilisent des grilles cartésiennes.

4.1.2 L’opérateur “ground truth”

Dans la suite de ce chapitre, par analogie aux approximations éléments finis, sauf
mention explicite du contraire, fh, gh, ϕh, uh et wh représenteront les matrices de Rnx×ny
associées aux approximations P1 des fonctions f , g, ϕ, u et w, composée pour chaque indice
i = 0, . . . , nx − 1, j = 0, . . . , ny − 1, des valeurs des évaluations ou des extrapolations
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dans V Oh aux nœuds du maillage T Oh de coordonnées (xi, yj), avec xi := i/(nx − 1),
yj := j/(ny − 1), où

V Oh := {vh ∈ H1(O) vh|T ∈ Pk(T ) ∀ T ∈ T Oh } . (4.3)

Dans la tradition de la littérature FNO (et réseaux de neurones en général), le FNO
va approcher un opérateur appelé l’opérateur “ground truth”, qui sera noté G†. Dans
notre cas, G† sera l’opérateur associant fh, gh, et la géométrie encodée par ϕh, à la
solution ϕ-FEM wh :

G† : Rnx×ny×3 → Rnx×ny×1

(fh, ϕh, gh) 7→ wh .
(4.4)

Remarque 4.1. Il est important de noter que wh est extrapolée par 0 en dehors de Ωh,
sans impact sur le FNO puisque ces valeurs ne seront pas vues par la fonctionnelle à
minimiser que nous définirons par la suite. En pratique cette extrapolation sera faite par
FEniCSX ([5, 80, 79, 3]).

4.1.3 Structure du FNO

Il est maintenant nécessaire de présenter quelques aspects essentiels à la compréhension
de l’architecture d’un FNO. Plus de détails au sujet des Neural Operators en général ont
été proposés dans [57], et en particulier au sujet du FNO dans [58, 52, 56].

Le principe sera de construire une application paramétrique

Gθ : Rnx×ny×3 → Rnx×ny×1 ,

(fh, ϕh, gh) 7→ wθ ,

qui approche l’opérateur G† défini par (4.4). On cherche ainsi à prédire une approximation
wθ de wh qui nous permette de reconstruire uθ = ϕhwθ + gh, une approximation de
uh = ϕhwh + gh en suivant le paradigme ϕ-FEM, comme illustré à la Figure 4.1. La
variable θ représente l’ensemble des paramètres que l’on devra obtenir par minimisation
d’une fonctionnelle.

Remarque 4.2. Le choix de prédire wh plutôt que directement la solution uh provient du
fait que multiplier la prédiction par ϕh permet d’imposer plus précisément les conditions
de bord. En effet, prédire directement uh introduira une erreur supplémentaire au bord.
Cependant, l’utilisation de cette approche est restreinte aux situations où l’on considère
le schéma direct ϕ-FEM. Ainsi, lors de l’utilisation du schéma dual (2.2) ou dans le cas de
conditions mixtes, cette approche ne sera pas utilisable et il sera nécessaire de prédire la
solution directement. Lors des simulations numériques à la Section 4.4, nous illustrerons
pour le premier cas test la différence entre les deux approches : prédire uh et prédire wh.

L’application Gθ est composée de plusieurs applications intermédiaires, appelées
couches et est définie par

Gθ = N−1 ◦Qθ ◦ H4
θ ◦ H3

θ ◦ H2
θ ◦ H1

θ ◦ Pθ ◦N .
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fh

ϕh

gh

wθ

Gθ

× +
ϕhwθ

1Ωh

uθ

ϕhwθ + gh

× uθ × 1Ωh

uθ|Ωh

Figure 4.1 – Construction d’une prédiction de ϕ-FEM-FNO pour la résolution de (4.1).

Dans le cas du problème de Poisson 2D que nous considérons, chacune de ces couches
agit sur des tenseurs 3D dont la troisième dimension (le nombre de canaux) varie entre
les couches. Plus précisément, la structure est la suivante :

Gθ : Rnx×ny×3 N−→ Rnx×ny×3 Pθ−→ Rnx×ny×nd
H1
θ−−→ Rnx×ny×nd

H2
θ−−→

. . .
H4
θ−−→ Rnx×ny×nd Qθ−−→ Rnx×ny×1 N−1

−−−→ Rnx×ny×1 ,

où nd est une dimension suffisamment élevée. Une représentation graphique (adaptée
de [58]) de l’opérateur Gθ est donnée à la Figure 4.2. Les transformations Pθ et Qθ sont
respectivement un embedding dans un espace de dimension élevée et une projection dans
l’espace de dimension désirée, toutes deux effectuées par des couches denses (cf. [58]).

Normalisations N et N−1 Pour améliorer les performances des réseaux de neurones, il
est bien connu que la normalisation des entrées et sorties du réseau est presque obligatoire
(cf. [71] par exemple). Nous allons donc appliquer une normalisation canal par canal,
notée N et une dé-normalisation N−1. En effet, pour améliorer les performances de nos
implémentations du FNO, puisque les valeurs des données peuvent être très différentes
(notamment entre f et ϕ), nous avons décidé de normaliser les données et les sorties,
comme dans [58].

L’opérateur de normalisation est appliqué indépendamment, canal par canal pour cha-
cun des canaux de l’image X. Pour chaque canal C de X, en notant Ctrain l’ensemble des
valeurs du même canal sur le sous-ensemble de données d’entraînement, la normalisation
est donnée par

NC(C) =
(
C −mean(Ctrain)

std(Ctrain)

)
,

où la moyenne et l’écart-type sont calculés uniquement sur Ωh. L’opérateur inverse est
lui donné par :

N−1(Y ) = Y × std(Y train) + mean(Y train) ,
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où Y correspond à un canal de la sortie du FNO et Y train est le vecteur composé des
solutions de l’opérateur « ground truth » sur les données d’entraînement.

ϕh

fh

gh

X

Gθ

N Pθ Fourier layer Qθ N−1 wθ

4 times

×

+ uθ

v

F W C
`
θ F−1

B`θ

+

ClθHl
θ

σ

Figure 4.2 – Représentation graphique de la pipeline ϕ-FEM-FNO pour l’approximation
de solutions de (4.1), adaptée de [58]. La partie supérieure représente la pipeline entière
et la partie inférieure une représentation plus détaillée d’une couche de Fourier. Les
cercles rouges correspondent aux entrées données au réseau et à la solution en sortie
de ϕ-FEM-FNO. On représente les entrées et sorties vues par le FNO dans des cercles
violets, avec en particulier X = (fh, ϕh, gh). De plus, les flèches noires correspondent à
des étapes internes du FNO et les flèches violettes à des étapes effectuées en dehors du
FNO.

Structures des couches Pθ et Qθ La transformation Pθ est composée d’une couche
fully connected avec nd neurones agissant sur chaque nœud, c’est-à-dire, pour tous
i ∈ {1, ..., nx}, j ∈ {1, ..., ny} et k ∈ {1, ..., nd},

Pθ(X)ijk =
3∑

k′=1
WPθ
kk′Xijk′ +BPθ

k ,

avec WPθ ∈Mnd,3(R), BPθ ∈ Rnd des paramètres à optimiser.
La transformation Qθ est composée de deux couches fully connected de tailles nQ

et 1, agissant également sur chaque nœud. La première dimension nQ est choisie plus
élevée que nd. La combinaison de ces deux couches permet finalement d’obtenir une
solution plus lisse qu’avec une seule couche permettant de passer de la dimension nd à la
dimension finale souhaitée, ici 1.
Ainsi, Qθ = (Qθ,ijk)ijk est définie pour tout X = (Xijk)ijk par, pour i ∈ {1, ..., nx},
j ∈ {1, ..., ny},
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Qθ(X)ij =
[ nQ∑
k=1

W
Qθ,2
1k σ

(
nd∑
k′=1

W
Qθ,1
kk′ Xijk′ +B

Qθ,1
k

)]
+BQθ,2 ,

avec WQθ,1 ∈ Mnd,nQ(R), BQθ,1 ∈ RnQ , WQθ,2 ∈ MnQ,1(R), BQθ,2 ∈ R des paramètres
à optimiser et σ une fonction d’activation appliquée terme à terme. Pour notre approche,
nous avons choisi la fonction GELU (Gaussian Error Linear Unit) donnée par f(x) = xϕ(x)
avec ϕ(x) = P (X 6 x) où X ∼ N (0, 1), comme dans l’implémentation originelle du
FNO 1 et de sa variante Geo-FNO 2.

Structure des couches de Fourier H`θ Chaque couche H`θ est constituée de deux
applications (cf. [58]) :

H`θ(X) = σ
(
C`θ(X) + B`θ(X)

)
,

où
• C`θ est définie par

C`θ(X) = F−1
(
W C

`
θF(X)

)
∈ Rnx×ny×nd×nd ,

avec W C`θ ∈ Cnx×ny×nd×nd une matrice de paramètres à optimiser et F , F−1 la
FFT réelle et son inverse, définies par :
Pour tous i ∈ {1, ..., nx}, j ∈ {1, ..., ny} et k ∈ {1, ..., nd},

F(X)ijk =
∑
i′j′

Xi′j′ke
2
√
−1π

(
ii′
nx

+ jj′
ny

)
,

et pour Y ∈ Cnx×ny×nd

F−1(Y )ijk =
∑
i′j′

Yi′j′ke
−2
√
−1π

(
ii′
nx

+ jj′
ny

)
.

• B`θ = (B`θ,ijk)ijk est une couche de biais définie pour tout X = (Xijk)ijk par :
Pour i ∈ {1, ..., nx}, j ∈ {1, ..., ny} et k ∈ {1, ..., nd},

B`θ(X)ijk =
nd∑
k′=1

W
B`θ
kk′Xijk′ +B

B`θ
k ,

avec WB`θ ∈Mnd(R) et BB`θ ∈ Rnd .
Les coefficients de W · et B· composent la quasi-totalité des paramètres à optimiser.

Ces paramètres sont soumis à deux contraintes théoriques :

1. https://github.com/neuraloperator/neuraloperator
2. https://github.com/neuraloperator/Geo-FNO

https://github.com/neuraloperator/neuraloperator
https://github.com/neuraloperator/Geo-FNO
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• Pour que la matrice C`θ(X) soit une matrice réelle, on doit imposer à W C`θ une
contrainte de symétrie hermitienne, c’est-à-dire W C

`
θ

nx−i,ny−j,k = W
C`θ
i,j,k. En pratique,

puisque l’on utilise une implémentation particulière de la FFT, la Real-FFT, les
coefficients de Fourier sont stockés dans des matrices de taille nx × (ny/2 + 1) et
sont automatiquement symétrisés lors de la FFT inverse. En pratique, il n’y a donc
pas de précautions particulières à prendre lors de cette étape.

• Les solutions du problème (4.1) sont en général très lisses. Ainsi, lorsque l’on
applique la RFFT, les hautes fréquences ne servant qu’à assurer la bijectivité,
peuvent être négligées. On ne gardera ainsi que les m×m premiers coefficients de
Fourier, correspondant aux basses fréquences.

Remarque 4.3. Un aspect intéressant du FNO est le nombre de paramètres à optimiser.
En effet, puisque l’on tronque les hautes fréquences, pour chaque couche Clθ le nombre de
paramètres est moins élevé que nx×ny×nd×nd. En particulier, le nombre de paramètres
nθ est indépendant de la résolution des données d’entrée et est donné par

nθ =
Pθ : 3×nd+nd︷ ︸︸ ︷

4× nd + 4× (

Clθ︷ ︸︸ ︷
2× n2

d ×m2 +

Blθ︷ ︸︸ ︷
n2
d + nd)︸ ︷︷ ︸

Hl
θ

+
Qθ : nd×nQ+nQ+nQ×1+1︷ ︸︸ ︷

(nd + 2)× nQ + 1 .

Par exemple, pour le premier cas test qui suivra, pour les paramètres choisis, cela
représentera 324577 paramètres à optimiser.
Remarque 4.4. Une fois entraînés, les FNO peuvent être utilisés avec des nouvelles données
pour des résolutions arbitraires nx, ny. Cette propriété de multi-résolution est due à la
structure du FNO utilisant les FFT. Cependant, cette propriété n’est pas directement
compatible avec l’approche ϕ-FEM de par la variation des domaines construits en fonction
des résolutions considérées.
Remarque 4.5 (Phénomène de Gibbs et padding). Un problème usuel de la RFFT
appliquée à des fonctions non périodiques est le phénomène de Gibbs : des oscillations
apparaissent au bord. Pour effacer ces oscillations, on peut utiliser des techniques de
padding : on étend les matrices en ajoutant des valeurs tout autour (i.e. on ajoute des
couches de pixels aux images) avant d’effectuer les calculs. À la fin, on restreint les
matrices à leurs dimensions originales. Il existe différentes méthodes de padding dans
la littérature, mais nous n’utiliserons ici que la méthode de padding réflective (c.f. la
documentation de PyTorch 3 pour un exemple). Il est intéressant de noter que puisque
ces phénomènes n’apparaissent qu’au bord du domaine, dans les deux premiers cas test
numériques que nous considérerons, le padding n’est pas nécessaire. Cependant, pour le
troisième cas test, nous en aurons obligatoirement besoin.

4.1.4 Choix de la loss function
Nous allons maintenant présenter la fonctionnelle que nous avons choisi de minimiser

pour l’approximation des solutions du problème (4.1).

3. https://pytorch.org/docs/stable/generated/torch.nn.ReflectionPad2d.html

https://pytorch.org/docs/stable/generated/torch.nn.ReflectionPad2d.html
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Le choix de cette fonction, appelée loss function sera très important pour assurer une
bonne précision et variera en fonction du problème considéré. Un choix de fonctionnelle
adaptée à la résolution de (4.2) sera proposé en Section 4.4.

Par construction, une prédiction du FNO sera donnée sur la même grille cartésienne
que les données d’entrée. Cependant, dans notre approche, les seules valeurs qui nous
intéressent sont les valeurs de la solution sur Ωh. Il est donc nécessaire de définir une
fonction n’agissant que sur les pixels correspondants. Un exemple de données et de
solution (restreintes à Ωh) est représenté à la Figure 4.6.

Soit Ndata la taille d’un échantillon de données. On note Utrue = (untrue)n=0,...,Ndata où
untrue = ϕnhw

n
h + gnh , la solution ground truth et Uθ = (unθ )n=0,...,Ndata avec

unθ = ϕnhGθ(fnh , ϕnh, gnh) + gnh = ϕnhw
n
θ + gnh

la solution ϕ-FEM-FNO.
La fonction à optimiser est une approximation de l’erreur moyenne H1 sur les données

considérées (cf. Figure 4.11 pour une justification numérique de ce choix), donnée par

L (Utrue;Uθ) = 1
Ndata

Ndata∑
n=0

(E0(untrue;unθ ) + E1(untrue;unθ )) , (4.5)

où

E0(untrue;unθ ) = ‖untrue − unθ ‖20,Sn0 ,

et

E1(untrue;unθ ) = ‖∇hxuntrue −∇hxunθ ‖20,Sn1 + ‖∇hyuntrue −∇hyunθ ‖20,Sn1 ,

avec ∇h l’approximation du gradient par différences finies centrées et S0 est l’ensemble
de pixels correspondant aux nœuds de Th. Enfin, S1 est l’ensemble des pixels de S0
privé d’une couche de pixels (construit en utilisant le 8-voisinage, cf. Figure 4.3 pour un
exemple).
Remarque 4.6. Dans l’expression de la loss function (4.5), l’erreur est calculée par rapport
à untrue et non wntrue. Cependant, cela ne signifie pas pour autant que le FNO sera
entraîné à prédire unθ . Cela signifie seulement que l’opérateur sera entraîné à prédire une
solution wθ qui, multipliée par ϕh et ajoutée à gh, sera proche de untrue. Nous illustrerons
numériquement dans la Section 4.4 l’intérêt de prédire wh par rapport à uh quand cela
est possible.

4.2 Trois autres approches
Nous avons pour l’instant considéré uniquement le cas de la méthode ϕ-FEM combinée

à un FNO. Cependant, cette combinaison n’est évidemment pas la seule combinaison
possible. Nous allons maintenant proposer deux autres variantes qui semblent également
très intéressantes. Il est également intéressant de présenter la méthode Geo-FNO, proposée
dans [56] proposant une autre solution permettant d’appliquer des FNO à des géométries
complexes.
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Figure 4.3 – En rouge, la frontière exacte d’un domaine circulaire. En couleurs (bleu et
gris), S0. En gris uniquement, l’ensemble S1.

4.2.1 La méthode Geo-FNO

Pour adapter le FNO à des géométries complexes, une approche a été proposée dans
[56]. Cette méthode, Geo-FNO, a notamment surpassé sur différents cas test numériques
la méthode DeepONet [61]. Cependant, son architecture est plus complexe et lourde que
l’architecture classique FNO. En effet, pour traiter les géométries complexes, tout en
conservant la structure du FNO utilisant les FFT, les auteurs proposent de construire
une transformation entre l’espace physique (la géométrie considérée, donnée par exemple
sous la forme d’un ensemble de coordonnées de nœuds d’un maillage) et un espace
latent, construit comme une grille cartésienne. Une fois cette transformation appliquée,
il est alors possible d’appliquer un FNO classique pour déterminer une solution dans
l’espace latent. Finalement, l’inverse de la première transformation est appliquée à la
solution « latente », ce qui permet d’obtenir la solution dans l’espace physique. Cette
transformation, dans l’idéal un difféomorphisme, peut être très complexe. Par exemple (cf.
[56]), une telle transformation peut être construite à l’aide de polynômes de Tchebychev.
Cependant, en pratique, la transformation sera souvent apprise par un réseau de neurones.
Ainsi, cela ajoute de nombreux paramètres à optimiser et plusieurs couches au réseau, ce
qui augmente la complexité et le coût (d’entraînement et d’inférence) de la méthode.

4.2.2 La combinaison ϕ-FEM-UNet

Il est naturel de s’interroger sur le choix du réseau à utiliser. En effet, le FNO est
parfaitement compatible avec l’approche ϕ-FEM, mais d’autres méthodes bien connues
telles que les UNet [77] le sont également. Nous avons donc adapté notre approche à un
réseau de type UNet que nous allons présenter.

Le U-Net, introduit dans [77], est une architecture de réseau de neurones convolutifs
conçue à l’origine pour la segmentation d’images. L’innovation principale du U-Net
est sa structure en forme de “U”, composée d’un chemin contractant (encodeur, la
partie « descendante ») pour capturer le contexte et d’un chemin expansif (décodeur,
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la partie « ascendante »). Contrairement aux architectures classiques de type encodeur-
décodeur, le U-Net inclue des skip connections entre les couches correspondantes du
chemin descendant et du chemin ascendant, permettant de préserver les informations
spatiales fines, i.e. correspondant aux hautes fréquences tronquées dans le FNO. Le UNet
est parfois aujourd’hui adapté et utilisé pour approcher des solutions d’EDP notamment
dans [65] ou dans [30].

Architecture du U-Net La présentation du UNet que nous allons effectuer corres-
pond comme nous l’avons fait pour le FNO à la version que nous avons implémentée
numériquement.

On considère une image d’entrée X ∈ Rnx×ny×nd avec nd = 3, correspondant aux
entrées (fh, ϕh, gh). L’objectif sera ici de construire un opérateur :

GUNet
θ (fh, ϕh, gh)→ wθ . (4.6)

Cet opérateur prendra donc en entrée une image X, comme pour ϕ-FEM-FNO et
donnera une approximation wθ de la solution wh en sortie. L’architecture du réseau
U-Net utilisé est représentée à la Figure 4.4. Ce réseau est construit comme une suite
de couches de convolutions, où chaque étape « down » est une suite de convolutions,
de max pooling (sauf pour la dernière étape) et de fonctions d’activation (ici ReLu), et
chaque couche « Up » est également construite comme une combinaison de convolutions,
en associant les étapes de skip connection représentées en pointillés sur la Figure 4.4. On
indique également sur cette figure les dimensions des tenseurs en sortie de chacune des
couches.

Finalement, pour notre approche ϕ-FEM-UNet, nous appliquons la même pipeline
que celle représentée à la Figure 4.1, à la seule différence que l’opérateur Gθ sera remplacé
par GUNet

θ . La fonctionnelle L à minimiser sera également définie par (4.5).
Remarque 4.7. L’un des avantages du réseau UNet est sa structure maintenant bien
connue. En effet, de nombreuses évolutions ont été proposées dans la littérature pour
améliorer les performances et pourraient donc être utilisées en combinaison avec ϕ-FEM.
Nous avons ici choisi de nous concentrer sur la version la plus simple de ce réseau, puisque
pour l’approche FNO, nous avons également considéré la version la plus simple. Il est
important de noter que l’inconvénient de l’implémentation de UNet proposée par rapport
au FNO est le nombre de paramètres à optimiser. En effet, en comparaison aux ≈ 325000
paramètres pour le FNO, dans le cas du UNet, 7753025 paramètres sont à optimiser.

4.2.3 La méthode Standard-FEM-FNO

Une autre approche envisageable est la combinaison d’un FNO avec une méthode
éléments finis classique. En effet, comme nous l’avons dit précédemment cela peut
introduire une erreur d’interpolation dans les résultats mais, ne rend pas la combinaison
impossible. De plus, en construisant une méthodologie adaptée, cette erreur d’interpolation
sera approximativement du même ordre que l’erreur de prédiction du réseau de neurones.

Pour cette approche, nous allons garder l’idée d’encoder la géométrie par une fonction
level-set.
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Figure 4.4 – Représentation de l’architecture UNet utilisée.

Ainsi, il sera nécessaire de générer des maillages conformes précis à partir de fonctions level-
set pour construire la base de données d’entraînement, ce qui augmentera inévitablement
le temps de génération de données par rapport aux approches basées sur ϕ-FEM. Pour
cela, nous utiliserons l’approche proposée en Section 5.1.1. Les données seront alors
générées par des simulations éléments finis classiques sur les maillages générés avant
d’être extrapolées sur l’espace V Oh , défini par (4.3). Cependant, c’est notamment à cette
étape qu’une première erreur d’interpolation sera introduite, puisqu’il sera nécessaire de
passer des nœuds du maillage aux nœuds de la grille cartésienne. De plus, sur les nœuds
de la grille cartésienne extérieurs au maillage conforme, proches de la frontière de ce
dernier, la solution sera prolongée, de sorte à obtenir une solution sur tous les pixels du
masque utilisé pour le FNO (l’ensemble S0 représenté à la Figure 4.3).

La structure du FNO sera la même que celle présentée précédemment, à la différence
que l’on construira cette fois une application paramétrique

Gstdθ : Rnx×ny×3 → Rnx×ny×1 ,

(fh, ϕh, gh) 7→ uθ ,
(4.7)

qui approchera
G†std : Rnx×ny×3 → Rnx×ny×1

(fh, ϕh, gh) 7→ uh ,

où uh représente ici l’approximation de la solution éléments finis conformes, extrapolée
sur V Oh .
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Pour l’entraînement de cet opérateur, la loss function utilisée sera définie par (4.5),
où untrue sera maintenant donnée par unh et unθ = Gstdθ (fnh , ϕnh, gnh), sera la solution prédite
par l’opérateur Standard-FEM-FNO (abrégé par la suite en « Std-FEM-FNO »).

4.3 Détails d’implémentation

Pour l’entraînement des différents modèles, nous avons toujours utilisé la même
structure algorithmique et le même algorithme d’optimisation : une méthode ADAM,
avec un learning rate initial α = 0.0005, et des paramètres β1 = 0.9, β2 = 0.999 et
ε = 10−7 pour entraîner les FNO (cf. Algorithme 1). Pendant les entraînements, le
learning rate est réduit lorsque la fonction L évaluée sur le jeu de données de validation ne
diminue pas pendant plusieurs itérations. La boucle d’entraînement utilisée est détaillée
à l’Algorithme 2, pour le cas de l’équation (4.1). Dans l’Algorithme 2, (F i, ϕi, Gi)
représente un batch de données. Les batches sont sélectionnés aléatoirement, tels que
F i = (fkh )k∈Ki , ϕi = (ϕkh)k∈Ki , Gi = (gkh)k∈Ki avec Ki un ensemble d’indices aléatoires
tels que i ∈ {1, . . . ,nombre de batches}. Les ensembles Ki sont eux construits tels que
Ki ∩Kj = ∅ pour i 6= j.

Algorithme 1 : Étape de l’algorithme ADAM.
Entrées : t, θt−1, β1, β2, ε, mt−1, vt−1.

1 Calculer le gradient : gt ← ∇f(θt−1)
2 Mise à jour du moment (« momentum update ») :

mt ← β1 ·mt−1 + (1− β1) · gt , vt ← β2 · vt−1 + (1− β2) · gt · ḡt
3 Correction :

m̂t ←
mt

1− βt1
, v̂t ←

vt
1− βt2

4 Mise à jour des paramètres :

θt ← θt−1 −
α√
v̂t + ε

· m̂t − w1θt−1

Remarque 4.8 (Calibrage du learning rate.). Le learning rate est un paramètre critique
à déterminer pour obtenir des résultats précis. Nous n’avons pas inclus de résultats
illustrant notre choix de ce paramètre, mais une étude numérique a été réalisée pour
déterminer un paramètre « optimal ». Une valeur trop élevée ou diminuant trop lentement
entraîne généralement des grandes oscillations des valeurs de la fonctionnelle et donc une
mauvaise convergence. À l’inverse, des valeurs trop faibles ou diminuant trop rapidement
entraînent une convergence lente, parfois vers un minimum local très éloigné des résultats
souhaités.

Pour éviter de telles situations, il a été nécessaire d’effectuer de multiples entraînements
afin de déterminer la valeur la plus adaptée à notre situation. De plus, nous avons
sélectionné un learning rate scheduler permettant de faire évoluer ce paramètre, offrant
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également les meilleurs résultats. Pour cela, le learning rate évoluera ainsi tout au long
de l’entraînement en fonction des valeurs de la fonctionnelle évaluée sur l’échantillon de
validation.

Pour d’autres variantes d’évolution du learning rate, un travail annexe effectué lors
d’une SEME et qui figure à l’annexe B pourrait être adapté à cette situation afin
d’améliorer la convergence, en particulier diminuer le nombre d’itérations nécessaires à
l’obtention de résultats satisfaisants.

Algorithme 2 : Algorithme d’entraînement utilisé.
Entrées : θ0 : paramètres aléatoires initiaux, X = (F,ϕ,G) et Ytrue : les données

d’entraînement, batch_size : la taille de batch, λ : paramètre de
régularisation.

1 pour t = 1, . . . , nombre d’epochs faire
2 pour i = 1, . . . , nombre de batch faire
3 Sélectionner un batch (F i, ϕi, Gi) ⊂ X et Y i

true ⊂ Ytrue de taille
batch_size.

4 Évaluer le modèle : Yθ = Gθti−1(F i, ϕi, Gi).
5 Calculer la loss :

L(Y i
true, Yθ) + λ

2× batch_size
∑
j

|wj |2︸ ︷︷ ︸
régularisation L2

.

6 Calculer le gradient de la loss, par rapport aux paramètres θti−1 :

∇θti−1L .

7 Étape d’optimisation : application de l’Algorithme 1.

8 Soient (Fval, ϕval, Gval) et Yval la partie de validation du jeu de données.
9 Évaluer le modèle sur l’échantillon de validation :

Yθ = Gθti(Fval, ϕval, Gval) .

10 Calculer la loss : L(Yval, Yθ).

Entraînement

Validation

11 Mise à jour du learning rate.

4.4 Simulations numériques
Nous allons maintenant illustrer l’efficacité de notre méthode ϕ-FEM-FNO avec

différents cas test numériques. Dans un premier temps, nous allons considérer l’équation de
Poisson (4.1), sur des géométries simples données par des ellipses aléatoires, pour illustrer
la précision et la rapidité de notre méthode, comparée à plusieurs autres techniques et
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en particulier à ϕ-FEM-UNet et Std-FEM-FNO. Nous étendrons ensuite notre étude
à des géométries plus complexes. Enfin, nous considérerons un problème d’élasticité
non-linéaire, l’équation (4.2).

Dans les différents cas test, le paramètre nd (nombre de neurones agissant sur chaque
nœud) sera fixé à 20, le nombre de neurones pour la première couche de Qθ, nQ sera
lui fixé à 128. Enfin, on conservera les m = 10 premiers coefficients de Fourier dans les
approches utilisant un FNO.

Comme pour les précédentes simulations éléments finis réalisées dans ce manuscrit,
les données ont été générées avec la librairie DOLFINx ([5, 80, 79, 3]). Les réseaux (FNO
et UNet) ont été implémenté avec la librairie Pytorch[75] 4.

Métriques d’évaluation Pour évaluer les performances des différentes méthodes, on
définit deux métriques différentes, correspondant à deux versions de l’erreur relative L2 :

• La première métrique, utilisée pour calculer l’erreur entre 2 tenseurs, i.e. l’erreur
entre une prédiction ϕ-FEM-FNO et une solution ground truth, est définie par :

E1(utrue, uθ) :=
√
E0(utrue;uθ)
N0(utrue)

, (4.8)

où uθ = ϕhGθ(ϕh, fh, gh) + gh, utrue = ϕhwh + gh et N0(utrue) = ‖utrue‖20,S0
. On

notera également L0(·) la moyenne de cette métrique sur un ensemble de données.
• La seconde métrique, utilisée pour calculer les erreurs des différentes méthodes par

rapport à une solution de référence éléments finis uref est donnée par :

E2(uref, uθ) := ‖ΠΩrefuθ − uref‖0,Ωref

‖uref‖0,Ωref

=

√√√√∫Ωref
(ΠΩrefuθ − uref)2 dx∫

Ωref
u2

ref dx , (4.9)

où ΠΩref est une approximation de la projection orthogonale L2 sur le domaine de
référence Ωref (domaine recouvrant le maillage T ref

h , maillage fin conforme sur Ω).

4.4.1 L’équation de Poisson-Dirichlet sur des ellipses aléatoires

Considérons premièrement le cas de l’équation (4.1) sur des domaines définis par les
fonctions level-set

ϕ(x0,y0,lx,ly ,θ)(x, y) = −1 + ((x− x0) cos(θ) + (y − y0) sin(θ))2

l2x

+ ((x− x0) sin(θ)− (y − y0) cos(θ))2

l2y
, (4.10)

avec
x0, y0 ∼ U([0.2, 0.8]) , lx, ly ∼ U([0.2, 0.45]) et θ ∼ U([0, π]) .

4. Les codes et données correspondant à ces cas test sont disponibles à l’adresse https://github.
com/KVuillemot/PhiFEM_and_FNO.

https://github.com/KVuillemot/PhiFEM_and_FNO
https://github.com/KVuillemot/PhiFEM_and_FNO
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L’équation (4.10) permet de construire une ellipse de centre (x0, y0) de semi-grand
axe lx et semi-petit axe ly, orientée d’un angle θ de centre (x0, y0). Pour ce cas test,
les données sont générées en utilisant une méthode de rejet (dite rejection sampling
method) sur les paramètres permettant de s’assurer que chaque domaine construit est
bien totalement inscrit dans le carré unité. Les fonctions f et g de (4.1) sont données par

f(A,µ0,µ1,σx,σy)(x, y) = A exp
(
−(x− µ0)2

2σ2
x

− (y − µ1)2

2σ2
y

)
, (4.11)

et
g(α,β)(x, y) = α

(
(x− 0.5)2 − (y − 0.5)2

)
cos (βyπ) , (4.12)

où A ∼ U([−30,−20] ∪ [20, 30]), (µ0, µ1) ∼ U([0.2, 0.8]2 ∩ {ϕ < −0.15}), σx, σy ∼
U([0.15, 0.45]) et α, β ∼ U([−0.8, 0.8]).

On génère un jeu de données de taille 2100, séparé en une partie pour l’entraînement,
composée de 1500 données, une partie pour la validation de taille 300 et une partie de test
de taille 300 également, toutes sur des grilles de résolution 64×64. Durant l’entraînement,
le jeu de données d’entraînement est lui divisé en batches (sous-ensembles aléatoires) de
taille 32 (correspondant à un ensemble de données considérées pour une évaluation de
L) à chacune des 2000 epochs (époques d’entraînement, c’est-à-dire le nombre total de
boucles parcourant l’ensemble des batches), comme décrit à l’Algorithme 2.
Remarque 4.9 (Génération de données). Pour la génération des données, on utilise des
éléments finis P1 et des interpolations P2 des fonctions f et ϕ, puisque l’on considère
qu’à cette étape, on peut utiliser un maximum d’informations. Cependant, lors des
comparaisons de méthodes qui vont suivre, nous utiliserons uniquement des interpolations
P1 pour une comparaison honnête des méthodes puisque les approches basées sur les
réseaux de neurones utilisent uniquement les valeurs aux nœuds.

Résultats sur les données de validation Dans un premier temps, on représente
à la Figure 4.5 (gauche) l’évolution de la fonctionnelle à minimiser, L évaluée sur un
sous-ensemble aléatoire (de taille 300) des données d’entraînement ainsi que sur les
données de validation, ce qui illustre que la fonctionnelle décroit sur les deux ensembles
de données. De plus, on représente à la Figure 4.5 (droite), l’évolution de L0 sur les
mêmes ensembles de données. Cette représentation permet de remarquer deux choses :
la loss function choisie semble adaptée au problème puisque la métrique d’intérêt (i.e.
l’erreur relative L2) décroit également.

À la fin des 2000 étapes d’entraînement, on sélectionne le modèle « optimal » corres-
pondant à l’ensemble de paramètres minimisant L sur le jeu de données de validation.
Ce modèle sera utilisé par la suite pour les comparaisons de méthodes.

Validation du modèle sur des données de test Il est maintenant nécessaire d’éva-
luer l’erreur (4.8) du FNO sur un jeu de données de test.
Cela permettra de vérifier que l’opérateur est bien entraîné et parvient à donner de bons
résultats sur de nouvelles données, et donc se comporte de la même façon que sur les
données de validation.
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Figure 4.5 – Cas test 1. À gauche (resp. droite), on représente l’évolution de L (resp. la
moyenne de l’erreur relative L2, L0) sur un sous-ensemble de l’échantillon d’entraînement
et sur les données de validation.

Figure 4.6 – Cas test 1. Exemple de données et de solution correspondante, restreintes
à Ωh, avec une erreur (4.8) de 2.5×10−3, correspondant à l’erreur médiane sur les données
de validation.

Cela permettra également de s’assurer que le modèle sélectionné précédemment est
optimal parmi tous ceux testés. Pour cela, on génère un nouvel ensemble de 2500 données
et on calcule l’erreur relative L2 pour plusieurs modèles intermédiaires de l’entraînement,
ainsi que pour le modèle optimal choisi. Les résultats présentés à la Figure 4.7, semblent
bien confirmer que le modèle choisi est optimal parmi ceux considérés.

Comparaison de ϕ-FEM-FNO avec d’autres approches Nous allons maintenant
conclure ce cas test par les résultats les plus importants pour confirmer l’intérêt de notre
approche par rapport aux méthodes suivantes :

• ϕ-FEM : on applique l’opérateur « ground truth » G†, sur des grilles de résolutions
64 × 64 (correspondant à une taille de cellule h ≈ 0.022), avec σD = 1 et des
éléments finis P1 ;

• Standard FEM : on utilise une méthode éléments finis classique, avec des éléments
P1 sur des maillages avec h ≈ 0.022 ;
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Figure 4.7 – Cas test 1. Erreurs (4.8) sur 2500 données de test. Le dernier modèle, en
rouge, correspond au modèle optimal sélectionné.

• ϕ-FEM-FNO : le modèle optimal sélectionné précédemment (entraîné avec 1500
données sur des données de taille 64× 64) ;

• ϕ-FEM-FNO 2 : on applique la méthodologie présentée pour ϕ-FEM-FNO mais en
prédisant cette fois directement la solution uθ plutôt que wθ.
On construit alors l’opérateur

Gθ : Rnx×ny×3 → Rnx×ny×1 ,

(fh, ϕh, gh) 7→ uθ ,

que l’on entraîne en utilisant les mêmes données et la même fonctionnelle L, définie
par (4.5), avec unθ la prédiction du réseau ;

• ϕ-FEM-UNet : on entraîne l’opérateur (4.6) avec une nouvelle fois la même fonc-
tionnelle (4.5), pendant 2000 itérations.

• Standard-FEM-FNO : on entraîne l’opérateur (4.7) pendant 2000 itérations, avec
des données P1 générées sur des maillages avec h ≈ 0.022, à partir des mêmes
paramètres.

• Geo-FNO : on entraîne un opérateur Geo-FNO (c.f. Section 4.2.1), en adaptant
l’approche de [56] (c.f. l’implémentation originale sur GitHub 5) à notre situation.
Pour cela, on génère à partir des mêmes paramètres un jeu de données sur des
maillages composés de 1053 nœuds (correspondant au nombre moyen de nœuds sur
les maillages considérés pour l’approche Standard-FEM-FNO). Pour l’entraînement,
la fonctionnelle donnant les meilleurs résultats dans ce cas est l’erreur relative L2.
C’est donc celle choisie pour entraîner l’opérateur utilisé ici.

Les différents opérateurs ont été entraînés avec des ensembles de données construits à
partir des mêmes paramètres. De plus les différents opérateurs FNO ont été entraînés
avec les mêmes hyper-paramètres. Enfin, pour générer les maillages conformes nécessaires
pour les approches Standard-FEM, Standard-FEM-FNO, Geo-FNO ainsi que pour les
maillages de référence utilisés pour déterminer les solutions de référence, nous avons
utilisé la méthode de construction présentée en Section 5.1.1.

5. https://github.com/neuraloperator/Geo-FNO/blob/main/elasticity/elas_geofno_v2.py

https://github.com/neuraloperator/Geo-FNO/blob/main/elasticity/elas_geofno_v2.py
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-1.1e-02 9.4e-02 2.0e-01 3.1e-01 4.1e-01
  

5.0e-07 2.4e-04 4.9e-04 7.3e-04 9.8e-04
   

1.7e-08 3.3e-04 6.6e-04 1.0e-03 1.3e-03
    

2.2e-08 4.3e-04 8.5e-04 1.3e-03 1.7e-03
     

Figure 4.8 – Cas test 1. De gauche à droite : solution de référence, puis différences
entre la solution de référence et la projection de la solution Standard-FEM (ustd), de la
solution ϕ-FEM (uϕ), et de la prédiction (ϕ-FEM-FNO uθ).
Le cas test présenté correspond au cas donnant l’erreur relative L2 médiane.
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Figure 4.9 – Cas test 1. Erreurs relatives L2 pour chaque méthode.

Pour comparer ces différentes approches, on considère un ensemble de 300 données de
test. Les solutions déterminées (prédites par les opérateurs et calculées par les méthodes
éléments finis) sont projetées sur des maillages de référence avec des tailles de cellules
href ≈ 0.005, comme illustré à la Figure 4.8. On calcule ensuite les erreurs selon la norme
(4.9), avec une solution éléments finis calculée sur le maillage fin pour solution de référence.
Les résultats présentés à la Figure 4.9 permettent d’illustrer que l’opérateur ϕ-FEM-FNO
parvient à déterminer des solutions avec une précision proche de celle des méthodes
éléments finis. De plus, ϕ-FEM-FNO est près de 2 fois plus précise que Standard-FEM-
FNO, et 10 fois plus que Geo-FNO. On remarque également que l’approche ϕ-FEM-FNO
donne de meilleurs résultats que ϕ-FEM-UNet, illustrant l’intérêt du FNO par rapport à
un classique UNet.
En effet, bien que les performances de ϕ-FEM-UNet soient relativement intéressantes, au
regard des résultats présentés, on peut supposer que pour des performances équivalentes
en termes de précision, il serait nécessaire d’utiliser plus de données et d’entraîner plus
longtemps le UNet. Enfin, on remarque que les performances de ϕ-FEM-FNO-2, bien
que légèrement inférieures à celles de ϕ-FEM-FNO, restent toutefois meilleures que celles
de Standard-FEM-FNO et Geo-FNO.
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Figure 4.10 – Cas test 1. Erreurs relatives L2 en fonction du temps de calcul (en
secondes).

On choisit également de comparer un point important : le ratio erreur-temps de calcul.
Pour cela, on mesure le temps de chacune des méthodes. Pour ϕ-FEM, le temps total
comprend les temps de sélection et de construction des maillages Th et T Γ

h (en incluant le
temps de génération du maillage cartésien), le temps d’interpolation des fonctions f , ϕ et
g, l’assemblage de la matrice éléments finis et le temps de résolution du système linéaire.
Pour Standard-FEM, le temps total comprend le temps de génération du maillage, les
interpolations de f et g, l’assemblage de la matrice éléments finis et la résolution du
système linéaire. Enfin, pour les autres méthodes, on mesure le temps d’inférence de
chaque modèle. On représente alors les résultats à la Figure 4.10, où chaque marqueur
a pour abscisse l’erreur moyenne et pour ordonnée le temps moyen (en secondes). Les
régions de couleurs ont pour largeur l’écart type du temps de calcul et pour hauteur l’écart
type de l’erreur, ce qui permet d’illustrer la variabilité de chaque quantité mesurée. Les
résultats illustrent clairement le gain de temps apporté par l’utilisation de méthodes de
Machine Learning, comparées aux méthodes éléments finis. En particulier, on remarque
que les résultats de ϕ-FEM-FNO, qui sont comparables en termes de précision aux
résultats FEMs, sont obtenus environ 100 fois plus vite.

Dans le Tableau 4.1, on compare les temps de calcul de chaque méthode. Pour les
méthodes de machine learning, la première colonne contient les temps de génération des
bases de données pour chaque méthode ; la deuxième colonne correspond au temps moyen
d’une itération de l’entraînement de chaque méthode et la troisième colonne est le temps
total des 2000 itérations de chaque entraînement. Enfin, pour l’ensemble des méthodes,
la dernière colonne contient le temps moyen pour obtenir une solution, mesuré comme
précédemment pour la Figure 4.10.
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Méthode Génération Une epoch Entraînement Inférence
ϕ-FEM 0.095

Standard FEM 0.156
ϕ-FEM-FNO 214.2 2.2 4400 0.002
ϕ-FEM-FNO-2 219.8 2.2 4400 0.002
Std-FEM-FNO 687.3 2.2 4400 0.002

Geo-FNO 10619 6 4.5 13800 0.007
ϕ-FEM-UNet 214.2 3.1 6200 0.002

Table 4.1 – Cas test 1. Temps de calcul (en secondes) pour chaque méthode.

Choix de la fonctionnelle L Nous avons choisi d’utiliser la norme H1 (approchée)
comme fonctionnelle à minimiser, plutôt que seulement la norme L2. Ce choix est
motivé par le gain en terme d’erreur, illustré à la Figure 4.11 où nous avons comparé la
fonctionnelle L choisie et la loss L2 (notée L0). Ces résultats illustrent que l’utilisation
du gradient dans la fonctionnelle n’est pas obligatoire pour obtenir de bons résultats,
mais améliore tout de même la précision de la méthode.
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Figure 4.11 – Comparaison des deux fonctionnelles, appliquées au cas test 1.

4.4.2 Second cas test : problème de Poisson sur des géométries
complexes aléatoires

Considérons une nouvelle fois le problème de Poisson (4.1) sur des géométries plus
complexes, avec les fonctions f et g définies par (4.11) et (4.12), avec f restreinte à des
valeurs positives uniquement. Pour ce cas test, on choisit de considérer des géométries
construites à partir de fonctions level-set ϕ définies par des sommes de 3 fonctions

6. Il est important de préciser ici que l’implémentation de la génération de données n’est pas optimale.
En effet, pour les données Geo-FNO il est nécessaire que toutes les données contiennent toujours le même
nombre de points, ce qui rend la génération des maillages complexe dans notre cas. Ainsi, le temps de
construction de tels maillages représente ici la majorité du temps de génération de données.
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Gaussiennes, plus précisément :

ϕ(x, y) = −ψ(x, y) + 0.5 max
(x,y)∈[0,1]2

ψ(x, y) , (4.13)

avec

ψ(x, y) =
3∑

k=1
exp

(
−(x− xk)2

2σk
− (y − yk)2

2γk

)
,

où les paramètres xk, yk, σk et γk ainsi que les paramètres des fonctions f et g sont
générés à l’aide d’un Latin Hypercube [64]. Les hyper-paramètres d’entraînement sont
les mêmes que pour le premier cas test, à l’exception de la taille de batch qui est fixée à
8, et on considère toujours des grilles cartésiennes de résolution 64× 64.

-1.0 -0.5 -0.0 0.5 1.0 -0.8 -0.4 -0.0 0.4 0.8

Gaussian centers

-1.0 -0.5 -0.0 0.5 1.0 -1.3 -0.6 -0.0 0.6 1.3

Examples of considered geometries and corresponding 

Figure 4.12 – Cas test 2. Exemples de fonctions level-set données par (4.13), avec les
frontières Γ associées. Les centres des fonctions gaussiennes sont marqués par les croix
noires.

-1.7e-02 1.1e-01 2.3e-01 3.5e-01 4.7e-01
  

7.0e-08 3.8e-04 7.6e-04 1.1e-03 1.5e-03
   

3.2e-08 4.7e-04 9.4e-04 1.4e-03 1.9e-03
    

4.8e-08 5.6e-04 1.1e-03 1.7e-03 2.2e-03
     

Figure 4.13 – Cas test 2. De gauche à droite : solution de référence, puis différences
entre la solution de référence et la projection de la solution Standard-FEM (ustd), de la
solution ϕ-FEM (uϕ), et de la prédiction (ϕ-FEM-FNO uθ).
Le cas test présenté correspond au cas donnant l’erreur relative L2 médiane.

Plusieurs exemples de fonctions ϕ sont représentés à la Figure 4.12. Comme pour le
cas test précédent, l’opérateur est entraîné pendant 2000 epochs, mais cette fois seulement
avec 500 données d’entraînement et toujours 300 de validation. De plus, l’erreur H1 (4.5)
est également à nouveau utilisée. On compare alors les performances de ϕ-FEM-FNO à
ϕ-FEM, Standard-FEM et Standard-FEM-FNO, sur 300 nouvelles données test. Comme
dans le cas test précédent, on utilisera une solution de référence FEM standard pour
calculer l’erreur. Un exemple de solution de référence est représenté à la Figure 4.13.
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Figure 4.14 – Cas test 2. Gauche : erreurs des 4 méthodes sur 300 données de test.
Droite : erreurs relatives L2 en fonction du temps de calcul.

Les résultats présentés à la Figure 4.14 (gauche) illustrent une nouvelle fois que
ϕ-FEM-FNO est capable d’atteindre une précision comparable à celle de ϕ-FEM et
de Standard-FEM, tout en donnant également de meilleurs résultats que Standard-
FEM-FNO. De plus, les résultats de ϕ-FEM-FNO et Standard-FEM-FNO sont obtenus
significativement plus rapidement, comme cela est illustré à la Figure 4.14 (droite).

Enfin, la Figure 4.15 illustre la corrélation entre l’erreur du FNO et la distance de
Hausdorff minimale entre une forme de test et les formes vues pendant l’entraînement.
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Figure 4.15 – Cas test 2. Gauche : Exemples de géométries de test. Les géométries
d’entraînement représentées correspondent à chaque fois à la plus proche (au sens de la
distance de Hausdorff) de la géométrie de test considérée.
Droite : erreurs relatives L2 en fonction de la distance de Hausdorff minimale.
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4.4.3 Déformation d’une plaque 2D trouée

Nous allons maintenant illustrer le potentiel de notre approche en considérant un cas
test proche d’une application biomédicale [66] : l’équation d’élasticité non-linéaire (4.2).

Plus précisément, nous allons considérer une plaque rectangulaire avec 5 trous circu-
laires à l’intérieur. Ce domaine sera noté Ω dont un exemple est illustré à la Figure 4.16.
Les différentes frontières de la plaque Ω sont données par :

• ΓtD et ΓbD sont le bord haut et le bord bas de la plaque, comme représenté à la
Figure 4.16, où des conditions de Dirichlet sont imposées ;

• ΓN est la frontière de Neumann, composée de :
— ΓlN et ΓrN , respectivement le côté gauche et le côté droit de la plaque,
— pour i ∈ {1, . . . , 5}, la frontière de chaque trou i notée ΓiN .

La plaque est fixée sur ΓbD, (i.e. u = 0), et un déplacement constant uD est appliqué
sur ΓtD (i.e. des conditions de Dirichlet non homogènes sont imposées). Ces conditions
ainsi que les conditions de Neumann sur ΓlN et ΓrN seront imposées de façon classique,
tandis que les conditions de bord pour les différents trous seront imposées via ϕ-FEM.

Remarque 4.10. On partitionne la frontière Γ comme suit :

Γ =

imposition standard︷ ︸︸ ︷
ΓbD ∪ ΓtD ∪ ΓlN ∪ ΓrN ∪

5⋃
i=1

ΓiN︸ ︷︷ ︸
imposition ϕ-FEM

.

Le problème considéré peut être écrit sous la forme suivante (c.f. [48, eq. (8.28)]) :
trouver le champ de déplacement u ∈ R2 vérifiant

−divP (F (u)) = 0 , dans Ω ,

u = uD , sur ΓtD ,
u = 0 , sur ΓbD ,

P (F (u)) · n = 0 , sur ΓN .

On considère ici un matériau Néo-Hookéen compressible, comme à la Section 2.5. Le
module de Young E est fixé à 0.97Pa et le coefficient de Poisson ν à 0.3.

Le schéma ϕ-FEM

Comme nous l’avons dit précédemment, puisque l’on considère un domaine carré,
une partie des conditions de bord peut être appliquée avec des méthodes standard.
Il est en revanche nécessaire de construire un schéma ϕ-FEM le plus adapté à cette
situation. Pour cela nous allons utiliser plusieurs level-set. Chacun des trous Ci de frontière
ΓiN = {ϕi = 0}, i = 1, . . . , 5, est défini par

Ci = {ϕi < 0}, avec ϕi(x, y) = r2
i − (x− xi)2 − (y − yi)2 ,
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où (xi, yi, ri) sont les coordonnées du centre du trou et son rayon. Le domaine Ω peut
alors être défini par

Ω =


5∏
i=1

ϕi︸ ︷︷ ︸
ϕ

< 0

 ∩ (0, 1)2.

Un exemple de configuration est représenté à la Figure 4.16.

ΓbD

ΓtD

ΓN

Ω

ΓbD
Figure 4.16 – Cas test 3. Gauche : représentation d’une configuration considérée.
Centre : exemple de déformation. Droite : variations possibles de la géométrie. Les carrés
en pointillés correspondent aux bornes des centres de chaque trou. Les sections rouges
contiennent toutes les variations possibles des trous.

Pour construire le schéma ϕ-FEM, on introduit une nouvelle fois le maillage Th,
construit à partir de l’interpolation ϕh de ϕ, qui couvre Ω et on note Ωh := ∪T∈ThT .

On définit également le sous-maillage T Γ
h , contenant toutes les cellules de Th en

intersection avec l’un des trous :

T Γ
h := {T ∈ Th : ∃i = 1, . . . , 5 t.q. ϕi > 0 sur un nœud de T}

et on note ΩΓ
h := ∪T∈T Γ

h
T .

Les espaces éléments finis seront construits comme précédemment dans le cas de
l’élasticité linéaire et non-linéaire. Plus précisément, pour k > 2, pour la solution
uh, on considérera l’espace éléments finis V (k)

h donné par (2.26) et l’espace homogène
correspondant V k,0

h . Pour imposer les conditions de Neumann sur les différents trous,
on utilisera deux variables auxiliaires y et p. Pour cela, on introduit ΩΓ,i

h le domaine
recouvrant le maillage composé des cellules de Th coupées par la frontière ΓiN :

T ΓiN
h = {T ∈ Th : T ∩ ΓNi,h 6= ∅},

avec ΓNi,h = {ϕi,h = 0}, où ϕi,h est l’interpolation Pk de ϕi sur Th.
Pour les variables auxiliaires, on considérera les espaces éléments finis Zh(ΩΓ

h) (défini
par (2.35)) et Q(k−1)

h (ΩΓ
h) (défini par (2.27)). Pour chaque trou i, les conditions de

Neumann seront imposées via les équations
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y + P (F (u)) = 0, dans ΩΓ,i
h ,

y∇ϕi + pϕi = 0, dans ΩΓ,i
h .

On obtient alors le schéma ϕ-FEM suivant : trouver uh ∈ V k
h , ph ∈ Q

(k−1)
h (ΩΓ

h) et
yh ∈ Zh(ΩΓ

h) tels que

∫
Ωh
P (F (uh)) : ∇vh+

5∑
i=1

(∫
∂ΩΓ,i

h

yhn·vh+γu
∫

ΩΓ,i
h

(yh+P (F (uh))) : (zh+Du(P ◦F )(uh)vh)

+ γp
h2

∫
ΩΓ,i
h

(yh∇ϕi,h + 1
h
phϕi,h) · (zh∇ϕi,h + 1

h
qhϕi,h)

+ γdiv

∫
ΩΓ,i
h

divyh · div zh
)

+Gh (uh,vh) = 0 ,

∀vh ∈ V k,0
h , qh ∈ Q

(k−1)
h (ΩΓ

h), zh ∈ Zh(ΩΓ
h) ,

où
Gh(u,v) := σNh

∫
Γh

[P (F (u))n] · [Du(P ◦ F )(u)vn] ,

avec Γh := ∂ΩΓ
h \ ∂Ωh, Du(P ◦ F )(u)v la dérivée de P évaluée en u, dans la direction v

et γp, γu, γdiv, σN des constantes positives.

Opérateur ϕ-FEM-FNO

Plusieurs aspects de ce cas test le rendent particulièrement différent des précédents.
Dans un premier temps, on considère maintenant des conditions de Neumann et de
Dirichlet. De plus, le bord du domaine étant le bord de la grille cartésienne, il sera
nécessaire d’appliquer un padding au bord (c.f. Remarque 4.5) pour éviter le phénomène
de Gibbs. De plus, contrairement aux situations précédentes, la solution obtenue par le
schéma ϕ-FEM est directement la solution du problème, qui ici est vectorielle. Ainsi, le
FNO prédira directement la solution, comme nous l’avons fait pour l’approche ϕ-FEM-
FNO-2 dans le premier cas test. Enfin, puisque les données variables de ce cas test sont
la géométrie et le déplacement uD appliqué sur ΓtD, l’opérateur ground-truth à approcher
est défini par

G† : Rnx×ny×2 → Rnx×ny×2

(ϕh, gh,y) 7→ uh = (uh,x, uh,y) ,
(4.14)

où uh,x et uh,y sont les deux composantes du champ de déplacement uh, et gh,y est la
composante verticale du déplacement uD imposé au bord, constante sur l’ensemble du
domaine (i.e. gh,y = g sur chaque pixel).

Dans ces situations de problèmes non-linéaires, les réseaux de neurones ont un grand
avantage par rapport aux méthodes éléments finis classiques. En effet, comme nous avons
pu le voir par exemple dans la Section 2.5, pour les méthodes classiques il est nécessaire
d’utiliser des solveurs itératifs et souvent plusieurs incréments pour appliquer les forces.
Ce nombre d’incréments peut fortement varier en fonctions des cas, ce qui le rend difficile
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à déterminer de manière optimale. L’approche ϕ-FEM-FNO quant à elle permet de
déterminer directement la solution sans passer par des itérations ou l’ajout de forces par
incréments.

Génération de données Pour générer les données (entraînement, validation et test),
on se place dans les configurations représentées à la Figure 4.16 (droite). Les trous sont
placés suffisamment loin des bords de la plaque et les bornes des paramètres caractérisant
les trous sont choisis de sorte à éviter des interpénétrations. La génération de paramètres
est une nouvelle fois réalisée à l’aide d’un Latin Hypercube de dimension 16 : 15 dimensions
pour les paramètres des différents trous et une dimension pour la condition de bord
(qui appartient à l’intervalle [0.3, 0.9]). Les paramètres du schéma ϕ-FEM sont fixés à
γu = 0.001, γp = γdiv = σN = 0.01. De plus, on réalise des simulations avec des éléments
finis P2 sur des grilles de résolutions 64× 64 et on ne conserve que les valeurs aux nœuds
pour construire la base de données.

Modification de la fonctionnelle Pour l’entraînement de l’opérateur, on choisit de
minimiser une approximation de la semi-norme H1, définie par

L (Utrue;Uθ) = 1
Ndata

Ndata∑
n=0

(
E1(untrue,x;unθ,x) + E1(untrue,y;unθ,y)

)
,

où
E1(untrue,·;unθ,·) = ‖∇hxuntrue,· −∇hxunθ,·‖20,Sn1 + ‖∇hyuntrue,· −∇hyunθ,·‖20,Sn1 ,

où utrue = (utrue,x, utrue,y) est la solution de l’opérateur G† (4.14) et uθ = (uθ,x, uθ,y) est
la solution obtenue par l’approximation Gθ.
Remarque 4.11. Utiliser la semi-norme H1 plutôt que la norme H1 permet dans cette
situation d’améliorer les performances de l’opérateur, en particulier aux bords. Cependant,
une fois l’opérateur entraîné, cela rend l’étape d’inférence plus lourde numériquement que
précédemment. En effet, il faut replacer la solution prédite dans le domaine de référence,
ce qui est fait par soustraction de la valeur moyenne de la prédiction sur le bas de la grille,
là où la solution doit être nulle. Cette méthode permet ainsi de simplifier l’optimisation,
puisque la fonctionnelle est moins lourde qu’en utilisant la norme H1 tout en améliorant
également les performances en termes d’erreur.

Résultats numériques Nous allons maintenant comparer notre approche à une mé-
thode éléments finis classique, à ϕ-FEM ainsi qu’à Standard-FEM-FNO et Geo-FNO.
Pour les méthodes éléments finis, on utilisera des éléments P2, avec des maillages dont
les tailles de cellules correspondent à des grilles cartésiennes de résolution 31× 31. Les
trois méthodes basées sur l’utilisation d’un FNO sont entraînées avec 200 données d’en-
traînement, divisées en batches de taille 8 et 300 données de validation, pendant 2000
epochs.

Pour évaluer les performances des différentes méthodes, on considérera l’erreur relative
L2 par rapport à une solution de référence uref, que l’on notera L̄2(uref,uh).



132
CHAPITRE 4. LES MÉTHODES ÉLÉMENTS FINIS COMBINÉES AUX RÉSEAUX

DE NEURONES

2.78e-20 1.97e-01 3.95e-01 5.92e-01 7.90e-01
 

1.41e-20 9.12e-04 1.82e-03 2.74e-03 3.65e-03
  

1.73e-20 3.38e-03 6.76e-03 1.01e-02 1.35e-02
   

3.58e-05 1.40e-02 2.79e-02 4.19e-02 5.58e-02
    

Figure 4.17 – Cas test 3. Exemple de déplacement obtenu, pour le cas correspondant
à l’erreur médiane de ϕ-FEM-FNO.

Un exemple de déplacement obtenu est représenté à la Figure 4.17, où la géométrie
de référence est déformée par la solution correspondante (solution de référence, solution
Standard-FEM, solution ϕ-FEM, solution ϕ-FEM-FNO), interpolée sur le maillage de
référence, avec en couleur l’erreur en chaque point par rapport à la solution de référence.

On compare les différentes méthodes sur le jeu de données de test (de taille 300).
Les erreurs relatives L2 représentées à la Figure 4.18 (gauche) indiquent que l’approche
ϕ-FEM-FNO est la plus précise parmi les approches machine learning testées. Cependant,
contrairement aux cas test précédents les résultats sont moins précis que les méthodes
éléments finis à nombre de degrés de liberté équivalent. Finalement, on s’intéresse aux
temps de calcul des différentes méthodes. Les résultats de la Figure 4.18 (droite) illustrent
parfaitement l’intérêt de ϕ-FEM-FNO : en moyenne, une erreur relative de 2% (environ
10 fois plus que pour les méthodes éléments finis) est obtenue et cela 1000 fois plus
rapidement que ϕ-FEM et Standard-FEM.
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Figure 4.18 – Cas test 3. Gauche : erreurs relatives L2. Droite : erreurs relatives L2

en fonction du temps de calcul.

4.5 Conclusion

Nous avons présenté une nouvelle approche hybride entre méthode éléments finis et
méthode de Machine Learning, appelée ϕ-FEM-FNO, permettant de traiter le cas de
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géométries complexes. L’étude numérique de cette méthode sur trois cas test a illustré
l’intérêt de notre approche. En effet, après entraînement de la méthode, ϕ-FEM-FNO
permet d’obtenir systématiquement des résultats plus rapides que les méthodes ϕ-FEM
ou Standard-FEM. L’approche s’est également montrée plus précise que plusieurs autres
approches combinant ϕ-FEM avec un réseau UNet, Standard-FEM avec un FNO ou
encore Geo-FNO. De plus, la méthode a permis d’obtenir ces résultats en utilisant peu
de données d’entraînement, même dans le cas de problèmes complexes avec de grandes
variations de géométries.





5 Quelques résultats en lien avec ϕ-FEM

Résumé

Dans ce dernier chapitre, nous présentons en détail deux outils
utilisés dans les chapitres précédents, permettant d’utiliser en pratique
des fonctions level-set. Dans un premier temps, nous décrirons une
méthode de construction de maillages conformes à partir de fonctions
level-set. Ensuite, nous proposerons deux techniques permettant de
reconstruire des fonctions level-set dans des cas plus généraux à partir
d’images binaires.

Dans une seconde partie, nous présenterons une méthode permettant
de diminuer le temps de calcul de la méthode ϕ-FEM en combinant
cette approche à une méthode multigrid. Nous présenterons alors cette
approche, nommée ϕ-FEM-Multigrid et illustrerons numériquement son
intérêt sur plusieurs cas test.

Enfin, nous proposerons une dernière méthode, basée sur l’approche
précédente. Cette approche combinera alors les réseaux de neurones
(FNO) avec l’approche ϕ-FEM-Multigrid.
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Ce dernier chapitre sera consacré à la présentation de deux outils utilisés durant
cette thèse, ainsi qu’à la combinaison de la méthode ϕ-FEM avec une approche de type
multigrid. Dans une première section, nous présenterons la méthode qui a été utilisée à
plusieurs reprises dans ce manuscrit afin de générer des maillages à partir de fonctions
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level-set. Dans cette même section, nous proposerons ensuite une nouvelle méthode
permettant de reconstruire des approximations de fonctions level-set lisses à partir
d’images binaires. Nous illustrerons alors les intérêts et défauts de cette méthode et nous
justifierons son intérêt dans notre situation. Ensuite, la deuxième section de ce chapitre
sera consacrée à la présentation d’une méthode que nous avons appelée ϕ-FEM-M, pour
ϕ-FEM-Multigrid. Nous présenterons alors l’algorithme ainsi que différents résultats
numériques. Enfin, dans une troisième section, nous présenterons une méthode hybride
combinant les avantages de la méthode ϕ-FEM-M et ceux de la méthode ϕ-FEM-FNO.

5.1 L’utilisation de fonctions level-set en pratique

Nous allons maintenant présenter deux méthodes qui ont eu un rôle essentiel pour les
simulations numériques présentées tout au long de ce manuscrit. La première méthode a
été utilisée à de nombreuses reprises pour générer des maillages de géométries complexes.
La seconde méthode proposera une nouvelle technique permettant de construire des
fonctions level-set utilisables notamment pour l’approche ϕ-FEM direct.

5.1.1 Construction d’un maillage conforme à partir d’une level-set

Dans un premier temps, nous proposons une approche qui a notamment été motivée
par la nécessité de cas test numériques sur des géométries complexes et la limitation des
mailleurs usuels à des formes classiques (cercles, carrés, ellipses, ...). Ainsi, puisqu’il était
important de comparer la méthode ϕ-FEM à une méthode éléments finis classique, il
était indispensable de considérer des situations où l’on disposait d’un maillage conforme
pour une level-set donnée, notamment pour calculer des solutions de référence.

La librairie MMG [68], combinée à la librairie PyMedit 1, offre la possibilité de
construire des maillages conformes à partir d’une level-set donnée. Un des principaux
atouts de cette librairie est la qualité des maillages construits. Comme on peut le voir à
la Figure 5.1 pour plusieurs résolutions, les maillages reconstruits sont très réguliers, ce
qui est très intéressant numériquement.

Pour évaluer la précision de reconstruction de la frontière, on utilise l’expression
analytique d’une level-set ϕ donnée par

ϕ(x, y) = r −R0(1 +A cos(nθ)) , (5.1)

avec 

R0 = 0.3 ,
A = 0.3 ,
n = 5 ,
r =

√
(x− 0.5)2 + (y − 0.5)2 ,

θ = arctan 2(y − 0.5, x− 0.5) .

1. https://gitlab.com/florian.feppon/pymedit

https://gitlab.com/florian.feppon/pymedit
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Figure 5.1 – Exemples de maillages reconstruits à partir de l’expression ϕ définie par
(5.1)
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Figure 5.2 – Erreurs de reconstruction au bord en fonction de la taille de cellule (gauche)
et du temps de calcul (droite).

On mesure l’erreur |ϕ(x, y)| en chaque nœud de bord du maillage reconstruit et on
s’intéresse à la moyenne, la valeur maximale et la valeur minimale. On représente les
résultats obtenus en fonction de la taille de cellule maximale du maillage reconstruit,
ainsi qu’en fonction du temps de construction du maillage à la Figure 5.2. Comme on
peut le voir, pour obtenir une précision satisfaisante au bord du maillage, il est nécessaire
de générer des maillages extrêmement fins. En particulier, il est très difficile d’atteindre
une précision de l’ordre de la précision machine au bord.
L’idée étant d’utiliser cette méthode pour construire des solutions de référence, il est
souhaitable de reconstruire le plus fidèlement possible le bord de la géométrie exacte.

Pour améliorer la précision au bord des maillages reconstruits, une méthode de
recalage des nœuds de bord est utilisée. Pour cela, on construira dans un premier temps
un maillage initial avec l’approche précédente, permettant d’avoir une initialisation
relativement précise. En sélectionnant ensuite les nœuds de bord du maillage reconstruit,
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il suffit alors d’appliquer l’algorithme suivant à chaque point xi = (xi, yi) du bord,

x
(k+1)
i = x

(k)
i − ϕ(x(k)

i )∇ϕ(x(k)
i )

‖∇x(k)
i ‖

, (5.2)

pour tout k < N où N est un nombre d’itérations maximal, ou bien tant que ϕ(x(k)
i ) > tol

où tol est une tolérance fixée, de l’ordre de la précision machine dans notre cas. Un
exemple d’application de la méthode est représenté à la Figure 5.3, où la précision machine
est obtenue après moins de 4 itérations pour chaque point.

Figure 5.3 – Illustration de l’application de la méthode. Les croix noires sur les segments
bleus correspondent aux nœuds de bord maillage initial. La frontière exacte est représentée
en rouge et les différentes itérations de l’algorithme (5.2) pour chaque nœud considéré
sont marquées avec des croix noires. La direction suivie à chaque itération est tracée en
pointillés. Enfin, les segments noirs correspondent aux faces du bord optimal reconstruit.
La figure de droite est un zoom des itérations correspondant au point du milieu sur la
figure de gauche.

On représente à la Figure 5.4 les résultats obtenus pour la situation précédente. On
voit alors que le coût de calcul supplémentaire est relativement faible, pour un gain de
précision au bord très important puisque l’on obtient ainsi des résultats de l’ordre de la
précision machine (10−14).

Cette approche a également été utilisée pour des cas 3D, avec le même gain de
précision comme sur l’exemple proposé à la Figure 5.5.

5.1.2 Approximation d’une level-set à partir d’une image binaire

Comme nous l’avons vu tout au long de ce manuscrit, la méthode ϕ-FEM repose sur
l’utilisation d’une fonction level-set. Dans une majorité des cas tests présentés, nous nous
sommes restreints à des géométries simples à décrire (cercles, ellipses, carrés, sphères,
...). Certains de nos cas tests impliquaient des géométries plus complexes à décrire, par
exemple le second cas test de la Section 4.4.2. Cependant, dans l’ensemble de ces cas
test, nous avons toujours considéré des fonctions level-set analytiques.
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Figure 5.4 – Erreurs de reconstruction après recalage au bord en fonction de la taille de
cellule (gauche) et du temps de calcul (droite).

Avg error : 4.48e-04 Avg error : 1.36e-15

Figure 5.5 – Gauche : maillage 3D reconstruit à partir d’une level-set donnée.
Droite : maillage adapté au bord.
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En pratique, la construction de telles level-set peut être complexe en fonction des données
d’entrée dont on dispose (maillage, nuage de points, images, etc). Ainsi pour compléter
les résultats précédemment proposés, nous avons choisi de considérer une situation
plus complexe, en considérant comme données d’entrée une image binaire en 2D. Cette
situation génère plusieurs difficultés dont la plus importante est la localisation de la
frontière du domaine représenté par cette image. Pour cela, on considérera par la suite
que la frontière réelle se trouve sur des pixels associés à l’intérieur du domaine. En
effet, dans le cas d’images binaires, il sera impossible de construire des coordonnées
exactes de points de frontière uniquement à partir d’une image binaire. Nous allons
donc proposer deux approches de reconstruction de level-set que nous combinerons aux
schémas ϕ-FEM (direct et dual) sur un exemple de résolution du problème de Poisson
(1.1). Nous comparerons alors ces approches à une méthode éléments finis classique en
utilisant 2 méthodes de construction de maillage que nous détaillerons.

SDF-generator Une idée naturelle pour construire une level-set à partir d’un maillage
ou d’une image serait de considérer la distance signée. Pour cela, il existe de nombreuses
méthodes : des méthodes déterministes (par exemple la Fast-Marching-Method [81]) ou
bien des méthodes basées sur des réseaux de neurones, par exemple [74]. On choisit ici
d’utiliser une méthode déterministe, en utilisant la librairie Scipy [88].

Figure 5.6 – Gauche : image binaire. Centre : distance signée reconstruite.
Droite : maillage conforme reconstruit.

Pour ce cas test, on construit une image binaire (contenant la frontière du domaine
réel) à partir de l’expression (5.1). L’image binaire générée est représentée à la Figure 5.6
(gauche). On construit alors la distance signée à la frontière de l’ensemble de pixels noirs,
représentée à la Figure 5.6 (centre). Enfin, à partir de la méthode présentée à la Section
5.1.1, on utilise cette distance signée pour reconstruire un maillage conforme. Comme
on peut le voir, la qualité au bord du maillage reconstruit est inférieure à la qualité des
maillages représentés à la Figure 5.1, ce qui est évidemment dû à l’approximation de la
frontière du domaine uniquement par des segments (que l’on pourrait voir comme les
côtés de chaque pixel). Cela se retrouve également dans les résultats présentés Table 5.1.
Ainsi, cette méthode génère une perte de précision au bord, mais offre tout de même des
résultats relativement satisfaisants.
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Cependant, comme nous avons pu le voir notamment avec la Figure 2.1, la version
directe du schéma ϕ-FEM peut être très sensible à la level-set utilisée. En particulier,
dans ce cas test, les résultats lors de l’utilisation de la distance signée étaient nettement
dégradés par rapport à l’utilisation d’une expression plus lisse. Ainsi, plusieurs techniques
de régularisation ont été testées, et nous avons finalement choisi d’appliquer la fonction
tanh à la distance signée calculée avant d’effectuer une interpolation par splines cubiques.

Produit de gaussiennes Dans un second temps, nous avons choisi de proposer une
nouvelle approche, afin de reconstruire des approximations de fonctions level-set caracté-
risant des frontières plus lisses qu’avec la distance signée.
Remarque 5.1. Il est important de préciser différents points. Dans un premier temps,
il s’agit une nouvelle fois d’approximations, de par la nature mal posée du problème
à résoudre. De plus, de par le choix de la forme de la level-set ϕ reconstruite, afin
d’obtenir des résultats satisfaisants il sera nécessaire que les géométries considérées soient
relativement lisses. Enfin, nous ne présenterons la méthode que dans le cas 2D, mais
cette dernière pourra être étendue à des situations 3D. Cependant, le coût de la méthode
pourra alors être relativement augmenté.

Pour cette méthode, l’idée est de construire une level-set sous la forme d’un produit
de fonctions Gaussiennes, définie par

ϕ(x, y) = (−1)n
n∏
j

(
− 1 + exp

(
−

x2
j

2l2x,j
−

y2
j

2l2y,j

))
, (5.3)

où

xj = cos(θj)(x− x0,j)− sin(θj)(y − y0,j) et yj = sin(θj)(x− x0,j) + cos(θj)(y − y0,j) .

Pour cela, on cherche à optimiser le choix des paramètres θ, x0, y0, lx et ly.
La méthode est séparée en plusieurs étapes :

1. À partir de l’image binaire, on construit deux polygones : le premier contiendra
le domaine, en particulier sa frontière, et le second sera construit en retirant une
couche de pixels au domaine (i.e. sera le plus grand domaine construit à partir de
l’image, ne contenant pas la frontière) ;

2. On construit le squelette de l’image avec la librairie Python Scikit-Image [86] (c.f.
Figure 5.7 gauche) ;

3. À partir du squelette, on détermine des points initiaux ainsi que le nombre de
gaussiennes à utiliser. Pour construire les points initiaux, on utilisera les points de
jonctions de plusieurs branches ainsi que les points de fin des branches. Un exemple
de points initiaux est représenté à la Figure 5.7 (centre) ;

4. On minimise finalement une fonctionnelle afin de trouver les paramètres optimaux et
d’obtenir ϕ comme représentée à la Figure 5.7 (droite). Le choix de la fonctionnelle
a évidemment une grande importance dans la qualité des résultats. En effet, pour
obtenir une solution ϕ satisfaisante, cette dernière devra capter les oscillations de
la frontière, sans que ces oscillations ne fassent exploser les dérivées et dérivées
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secondes de la solution. Pour cela, on construit une fonctionnelle qui sera évaluée
en ϕ pour tout ϕ(x0,y0,lx,ly ,θ)(x, y), composée de plusieurs termes :

F (ϕ) = αf1(ϕ) + βf2(ϕ) + γf3(ϕ) + δf4(ϕ) ,

où :

f1(ϕ) = 1
nxny

∑
(x,y)∈B

(
∂2

∂x2ϕ(x, y)2 + 2 ∂2

∂x∂y
ϕ(x, y)2 + ∂2

∂y2ϕ(x, y)2
)
,

f2(ϕ) =
∑

(x,y)∈Bi

ϕ(x, y)2 ,

f3(ϕ) =
∑

(x,y)∈Be

ϕ(x, y)2 ,

f4(ϕ) = 1
nxny

∑
(x,y)∈B

(
1−

(
∂

∂x
ϕ(x, y)2 + ∂

∂y
ϕ(x, y)2

))2
,

où Be et Bi sont les deux polygones construits à l’étape 1, et B est l’ensemble des
coordonnées de la discrétisation de [0, 1]× [0, 1] correspondant à l’image considérée.
Numériquement, toutes les dérivées seront approchées par des différences finies
centrées du second ordre.

Figure 5.7 – Construction de level-set à partir d’images binaires.

Remarque 5.2. Bien que cette méthode ne fournisse qu’une approximation de la frontière
à partir d’une image, elle permet néanmoins de générer des cas tests sur des géométries
particulièrement complexes, comme le montre la Figure 5.8. Dans l’exemple présenté, on
constate que l’approximation de la frontière n’est pas idéale avec les paramètres choisis.
Toutefois, une géométrie satisfaisante est obtenue avec seulement quatre gaussiennes. Les
paramètres estimés, bien qu’ils ne coïncident pas précisément avec ceux de la géométrie
réelle, permettent néanmoins de reconstruire une forme suffisamment complexe pour être
exploitée dans le cas test 3 de la Section 2.1.
Remarque 5.3. Une adaptation possible de cette méthode est l’utilisation d’une com-
binaison linéaire de gaussiennes plutôt que le produit (5.3). Ainsi, cela permettra par
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exemple de mieux capter certaines oscillations de la frontière. Cependant, l’optimisation
sera plus complexe notamment en raison des paramètres supplémentaires à optimiser et
de la nécessité d’ajouter des contraintes d’optimisation.

Figure 5.8 – Cas d’une géométrie plus complexe. Gauche : image initiale et initialisation
des centres. Droite : solution ϕ obtenue.

Cas test Pour déterminer l’erreur lors de la reconstruction de maillages conformes,
on utilise les deux approches précédentes combinées à la méthode présentée en Section
5.1.1. On compare également ces approches à une méthode permettant de reconstruire
un maillage directement à partir d’une image, en utilisant la librairie Python nanomesh 2

[84].
Pour évaluer les reconstructions de maillage, on utilise une nouvelle fois l’expression

(5.1) et on calcule l’erreur |ϕ(x, y)| au bord. On obtient alors les résultats présentés
dans le Tableau 5.1, pour des tailles de maillages comparables. On peut notamment
remarquer que la méthode de reconstruction à partir de fonctions gaussiennes offre
approximativement les mêmes résultats que l’approche à partir de la distance signée
et que ces deux méthodes semblent légèrement plus précise que la version Nanomesh.
On compare également l’approche de référence, pour laquelle le maillage est construit à
partir de l’expression exacte de la level-set.

Référence Nanomesh Distance signée Gaussiennes
Erreur Mini. 0.0 2.3× 10−5 4.5× 10−6 2.0× 10−6

Erreur Moyenne 8.0× 10−16 2.9× 10−3 1.2× 10−3 1.2× 10−3

Erreur Maxi. 9.9× 10−15 7.7× 10−3 4.3× 10−3 4.1× 10−3

Table 5.1 – Erreurs de reconstruction à la frontière.

Dans un second temps, on s’intéresse à la résolution de l’équation de Poisson (2.12),
avec uniquement des conditions de bord Dirichlet (Γ = ΓD). Le second membre du
problème sera donné par f(x, y) = 10 cos(x− 0.5) sin(π/3(y − 0.5)) et les conditions de
bord par uD(x, y) = x cos(y).

2. https://github.com/hpgem/nanomesh

https://github.com/hpgem/nanomesh
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On considère une nouvelle fois l’expression (5.1) pour générer un maillage de référence
sur lequel on calcule une solution de référence via une méthode standard.
On compare alors 9 approches sur la Figure 5.9 :

1. une méthode éléments finis classique avec (en rouge) :
• un maillage généré à l’expression exacte de ϕ, en utilisant l’approche de la

Section 5.1.1 (traits pleins) ;
• un maillage généré à partir de la distance signée à une image binaire (avec

l’approche de la Section 5.1.1) (traits discontinus) ;
• un maillage généré à l’aide de Nanomesh (pointillés) ;

2. les schémas ϕ-FEM direct (en bleu) et dual (en vert), en utilisant :
• l’expression exacte de ϕ (traits pleins) ;
• la distance signée (régularisée avec la fonction tanh) (traits discontinus) ;
• l’expression (5.3) (pointillés) ;
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Figure 5.9 – Erreurs des différentes méthodes en norme relative L2 (gauche) et en norme
relative H1 (droite).

On observe sur la Figure 5.9 différents points très intéressants. En ce qui concerne les
approches Standard-FEM, sans surprise, les résultats obtenus avec un maillage reconstruit
à partir de la distance signée sont relativement proches de ceux obtenus avec l’expression
exacte. Cependant, les maillages reconstruits à partir de l’image initiale mènent à des
erreurs qui stagnent très vite et donc des résultats peu précis. Concernant le schéma
ϕ-FEM dual, comme on pouvait s’y attendre, l’expression exacte de la level-set ϕ donne
les meilleurs résultats parmi les trois choix considérés. Cependant, il est très intéressant
de remarquer que les deux méthodes de reconstruction entraînent des résultats très
semblables pour la norme L2 et la norme H1. En particulier, il est intéressant de noter
que la précision obtenue en norme L2 atteint un plateau autour de 10−2, liée à l’erreur
de reconstruction de la fonction level-set. Enfin, concernant le schéma ϕ-FEM direct, les
résultats sont très nettement améliorés lors de l’utilisation de la méthode basée sur les
Gaussiennes en comparaison à l’utilisation de la distance signée ou à l’expression exacte
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dont les gradients présentent des singularités, bien que la méthode reste particulièrement
sensible à l’expression utilisée.

5.2 ϕ-FEM et l’approche « multigrid »
Dans la Section 3.5.3, nous avons proposé une approche « Multigrid » combinée

au schéma ϕ-FD pour résoudre le problème de Poisson avec conditions de Dirichlet
homogènes (1.1). Une extension naturelle à cette approche est une méthode ϕ-FEM
combinée à la technique multigrid. Cette approche sera particulièrement intéressante à
employer lors de la résolution de problèmes non-linéaires qui nécessitent l’utilisation de
solveurs itératifs. Pour cela, nous allons présenter notre approche ainsi que des résultats
numériques pour la résolution de deux problèmes. Dans un premier temps, l’équation de
Poisson non-linéaire avec conditions de Dirichlet homogènes, de la forme{

−∇ · (q(u)∇u) = f , dans Ω ,

u = 0 , sur Γ ,
(5.4)

où q(u) est une fonction rendant le problème non-linéaire, par exemple on considérera
par la suite q(u) = 1 + u2 exp(2u). Afin d’illustrer l’intérêt de notre méthode et son
applicabilité dans un cas 3D, nous considérerons dans un second temps l’équation de
Poisson-Dirichlet (1.1) sur une sphère.

5.2.1 Méthodologie

L’idée de départ est de construire une suite de raffinements T O,(i)h du maillage cartésien
initial T O,(0)

h . Alors, pour chaque maillage intermédiaire T O,(i)h , il reste à construire les
domaines et maillages habituels ϕ-FEM : Ω(i)

h , T (i)
h , ΩΓ,(i)

h et T Γ,(i)
h . On utilise ensuite un

schéma ϕ-FEM pour résoudre chacun des problèmes intermédiaires : sur les maillages
grossiers, avec un solveur direct et les maillages fins avec un solveur itératif.

Figure 5.10 – Construction des maillages T ih correspondant à l’algorithme 3.

Différentes itérations des maillages T ih obtenus en raffinant T Oh sont représentées à la
figure 5.10.

La méthode multigrid à appliquer est présentée dans l’algorithme simplifié 3, où l’on
considère que l’on utilise seulement une étape initiale (résolution grossière) et une étape
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finale (résolution fine). Cette solution a l’avantage de permettre d’initialiser le solveur
itératif « fin » avec une solution proche de la solution recherchée, et donc de réaliser moins
d’itérations du solveur itératif fin, ce qui représente un gain de temps non négligeable.

L’utilisation de la méthode ϕ-FEM offre ici un grand intérêt : en construisant
correctement la grille cartésienne initiale, il sera possible de ne raffiner ensuite que
les cellules de Th et non plus de T Oh . On pose ainsi T 0

h = Th. On construit alors une suite
(T i+1
h )i, raffinements des maillages T ih , où

T ih :=
{
T ∈ T i,Oh : T ∩ {ϕh < 0} 6= ∅

}
,

avec T i,Oh le raffinement de T i−1
h pour i > 1 et T 0,O

h la grille cartésienne initiale. En effet,
comme représenté à la figure 5.10, chaque maillage T i+1

h est contenu dans le maillage T ih .
Ainsi, le coût de construction des maillages T ih (pour i > 0) est bien moins élevé qu’en
raffinant plusieurs fois T Oh . On utilisera alors comme nouveau maillage initial, à chaque
itération de raffinement, le maillage Th précédent (i.e. le maillage le plus clair sur les
figures de 5.11).

Figure 5.11 – Construction des maillages T ih correspondant à l’algorithme 4.
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Algorithme 3 : ϕ-FEM-M
« Brute force »
Entrées : N : nombre d’étapes de

raffinement, Ns : nombre
de résolutions ϕ-FEM
(Ns = 2), n : nombre de
cellules dans chaque
direction

1 pour i = 0 à Ns faire
2 si i = 0 alors
3 Construire T O,(0)

h , avec
n× n cellules

4 T Oh = T O,(0)
h

5 sinon
6
7 pour j = 1 à N + 1 faire
8 T O,(j)h =

Raffiner(T O,(j−1)
h )

9 T Oh = T O,(N)
h

10 Construire Th, T Γ
h , FΓ

h et la
formulation variationnelle

11 si i = 0 alors
12 Initialiser le solveur avec

u = 0

13 sinon
14 Interpoler u (solution

grossière) sur Th (fin)
15 Initialiser le solveur avec

u = Ihu0

16 Résoudre F (u, v) = 0

Algorithme 4 : ϕ-FEM-M

Entrées : N : nombre d’étapes de
raffinement, Ns : nombre
de résolutions ϕ-FEM
(Ns = 2), n : nombre de
cellules dans chaque
direction

1 pour i = 0 à Ns faire
2 si i = 0 alors
3 Construire T 0,O

h , avec n× n
cellules

4 T Oh = T 0,O
h

5 sinon
6 T 0,O

h = Th
7 pour j = 1 à N + 1 faire
8 T j,Oh =
9 Raffiner(T j−1,O

h )
10 T Oh = T N,Oh

11 Construire Th, T Γ
h , FΓ

h et la
formulation variationnelle

12 si i = 0 alors
13 Initialiser le solveur avec

u = 0

14 sinon
15 Interpoler u (solution

grossière) sur Th (fin)
16 Initialiser le solveur avec

u = Ihu0

17 Résoudre F (u, v) = 0

Une représentation graphique de la pipeline appliquée dans l’Algorithme 4 est donnée
à la Figure 5.12, dans le cas de conditions de Dirichlet homogènes (i.e. u = 0 sur Γ).

Remarque 5.4. La méthode de raffinement appliquée est la méthode classique implémentée
dans le package DolfinX, dont plusieurs étapes sont représentées pour un cas simple à la
Figure 5.13.
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Figure 5.12 – Représentation graphique de la pipeline ϕ-FEM-M, dans le cas de
conditions de Dirichlet homogènes.

Initial mesh Step 0 Step 1 Step 2

Figure 5.13 – Exemple de raffinements successifs du maillage initial.

5.2.2 Résultats numériques

Nous allons maintenant illustrer l’intérêt de cette approche sur plusieurs cas test
numériques, en comparaison avec la méthode Standard-FEM et la méthode classique
ϕ-FEM.

Cas test 1 : résolution de l’équation (5.4) sur un disque Dans un premier temps
nous considérons l’équation (5.4) définie sur le disque de centre (0.5, 0.5) et de rayon√

2/4. Le calcul d’erreur sera fait à l’aide d’une solution manufacturée radiale satisfaisant
u = 0 sur Γ, donnée par

u = cos
(
π

2 r
)
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avec r = 1
R

√
(x− 0.5)2 + (y − 0.5)2.

On choisit également q(u) = 1 + u3 exp(2.5u) et on calcule analytiquement f .
Le schéma ϕ-FEM utilisé sera le schéma direct (1.10), adapté à l’équation (5.4), écrit

sous la forme : trouver wh ∈ V (k)
h avec uh = ϕhwh telle que∫

Ωh
q(uh)∇uh · ∇vh −

∫
∂Ωh

q(uh)(∇uh)n · vh

+Gh(uh, vh) + Jh(uh, vh)−
∫

Ωh
f · vh = 0 , ∀vh ∈ V k

h ,

où
Jh(u, v) := σDh

2
∫

ΩΓ
h

(div(q(u)∇u) + f) · div(q(u)∇v) ,

et
Gh(u, v) := σh

∑
E∈FΓ

h

∫
E

[q(u)∇u · n] · [q(u)∇v · n] .

Les résultats obtenus par la méthode ϕ-FEM, la méthode éléments finis standard et
notre nouvelle approche ϕ-FEM-M sont représentés à la Figure 5.14, illustrant l’intérêt
de notre approche. Sur ce premier cas test, nous avons fixé la tolérance des solveurs
itératifs pour ϕ-FEM-M à 10−5 et avons choisi comme résolution grossière 1/4 de la
résolution fine : on choisit de faire une résolution grossière sur une grille N × N puis
on raffine deux fois le maillage avant de résoudre le problème. Ainsi, notre méthode
atteint ici presque les performances de ϕ-FEM en termes de précision, et les dépasse très
clairement en temps de calcul. De plus, aussi bien en erreur qu’en temps de calcul, notre
méthode donne de meilleurs résultats que la méthode standard : pour un seuil d’erreur
fixé, ϕ-FEM-M est plus rapide que la méthode standard. On considère également une
seconde version de ϕ-FEM-M, où la résolution grossière est constante à 20×20, essentielle
pour l’applicabilité de la méthode que nous présenterons ensuite. Cette approche, notée
ϕ-FEM Multigrid 2 sur la Figure 5.14 donne également de très bons résultats, aussi bien
en termes d’erreurs que de temps de calcul.

Cas test 2 : Équation (1.1) sur une sphère Appliquons maintenant notre méthode
à un cas 3D. Pour cela on considère l’équation (1.1), avec une solution de référence
radiale, donnée par

u = cos
(
π

2 r
)

avec r = 1
R

√
(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 sur la sphère centrée en (0.5, 0.5, 0.5),

de rayon R =
√

2/4.
Le schéma ϕ-FEM utilisé sera celui introduit en Section 1.2, à l’équation (1.10).

Comme nous l’avons vu dans la Section 3.5.3 dédiée à ϕ-FD-multigrid, il est presque
impossible de résoudre ce problème avec un solveur direct. Ainsi, nous allons comparer
notre approche uniquement à des solveurs itératifs (à chaque fois le Gradient BiConjugué
Stabilisé) pour ϕ-FEM et Standard-FEM. Les résultats de la Figure 5.15 illustrent une
nouvelle fois l’intérêt de notre approche, puisqu’elle permet de diminuer l’erreur ainsi
que le temps de calcul.
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Figure 5.14 – Cas test 1. Gauche : erreurs relatives L2 en fonction de la taille de
cellule. Droite : temps de calcul en fonction de l’erreur relative L2.
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Figure 5.15 – Cas test 2. Gauche : erreurs relatives L2 en fonction de h. Droite : temps
de calcul en fonction de l’erreur relative L2.

5.3 ϕ-FEM-M-FNO : une nouvelle méthode hybride
Finalement, une idée naturelle au regard de ce qui a été présenté précédemment, est

une combinaison des méthodes ϕ-FEM-FNO et ϕ-FEM-M. En effet, entraîner un FNO à
une résolution grossière fixée permettrait ainsi d’éviter la première résolution éléments
finis. Cela a alors plusieurs intérêts en termes de coût de calcul :

• la génération de données est plus rapide que pour l’utilisation seule de ϕ-FEM-FNO
puisqu’elle peut être effectuée sur des grilles relativement grossières ;

• le coût d’entraînement peut également être réduit puisque les tenseurs peuvent être
de dimensions réduites (tant en résolution qu’en nombre de données) ;

• le coût de ϕ-FEM-M est réduit : la première résolution fine est évitée, tout comme
les différentes interpolations sur le maillage initial.
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Cependant, il est important de préciser que cette approche nécessite une étape
coûteuse numériquement. En effet, lorsque l’on effectue une prédiction à l’aide de la
méthode ϕ-FEM-FNO, on obtient une solution sous la forme d’une matrice (ou d’un
tenseur) qu’il sera nécessaire de discrétiser sous la forme d’une fonction éléments finis.
Pour cela, on utilisera les valeurs de la matrice (correspondant aux valeurs nodales)
d’une fonction éléments finis associée. Cependant, cette étape n’est pas optimale sous
FEniCSX et nécessite de construire un mapping entre l’ordre des degrés de liberté de
l’espace éléments finis associé et l’ordre des valeurs dans le tenseur solution.
Remarque 5.5. Il serait bien évidemment possible de ne pas utiliser la méthode multigrid
et de prédire uniquement une solution initiale pour les solveurs itératifs sur le maillage
à la résolution désirée. On retrouve par exemple cette idée de prédiction utilisée pour
initialiser un solveur de Newton dans [72]. Cependant, cela nécessite alors de générer
des données à la résolution fine et d’entraîner le réseau pour la même résolution, ce qui
augmente considérablement le coût de calcul total. De plus, il est alors nécessaire de
construire le maillage Th à partir de la grille cartésienne maillée finement, ce qui est
également numériquement relativement lourd.

Une autre idée de combinaison entre méthode éléments finis et réseaux de neurones
proposée par [6] démontre également de très bons résultats. Cette méthode, combinant
PINNs et Standard-FEM, est construite dans l’idée de corriger une prédiction de réseau
de neurones (effectuée sur un nombre élevé de points) avec une méthode éléments finis
appliquée sur un maillage grossier.

5.3.1 Pipeline

Une représentation graphique de la pipeline de ϕ-FEM-M-FNO est donnée à la Figure
5.16, dans le cas de conditions de Dirichlet non homogènes (i.e. u = g sur Γ).
L’approche consiste en trois étapes importantes :

• Résolution grossière : prédiction d’une solution grossière et construction du maillage
T 0
h ;

• Raffinement : boucle de raffinement pour atteindre la résolution souhaitée ;
• Résolution fine : interpolation de la solution grossière sur le maillage fin et résolution
ϕ-FEM classique avec un solveur itératif initialisé avec la solution précédemment
déterminée.

5.3.2 Cas test numériques

Cas test 1 : le cas 2D

Pour ce premier cas test, nous allons considérer l’équation (5.4) avec des conditions
de Dirichlet non homogènes u = g sur Γ, où g est donnée par (4.12). Les géométries
seront définies par des level-set ϕ de la forme (5.3). Pour l’entraînement du FNO, on
choisit de générer 500 données d’entraînement et 300 de validation. On effectue 2000
itérations et on cherche à minimiser la fonctionnelle L définie par (4.5). On compare
alors cette nouvelle approche à la méthode ϕ-FEM classique, à Standard-FEM ainsi qu’à
la méthode ϕ-FEM-M présentée précédemment.
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Figure 5.16 – Représentation graphique de la pipeline ϕ-FEM-M-FNO, dans une
situation correspondant au cas test 1.

Un exemple de solution obtenue pour ce problème est représenté à la Figure 5.17. Dans
les deux situations suivantes, on considère 5 données issues d’un jeu de données de test
pour étudier numériquement les différentes méthodes.

-1.4e-03 8.9e-02 1.8e-01 2.7e-01 3.6e-01
  

8.8e-09 1.6e-05 3.2e-05 4.8e-05 6.4e-05
   

1.6e-10 1.5e-05 3.0e-05 4.5e-05 6.0e-05
    

1.4e-11 1.4e-05 2.8e-05 4.2e-05 5.7e-05
     

1.4e-11 1.4e-05 2.8e-05 4.2e-05 5.7e-05
      

Figure 5.17 – Cas test 1. De gauche à droite : solution de référence, puis différences
entre la solution de référence et la projection de la solution Standard-FEM (ustd), de la
solution ϕ-FEM (uϕ), de la solution ϕ-FEM-M (uϕ−M ), et de la solution
ϕ-FEM-M-FNO (uθ,M ).

ϕ-FEM-M-FNO : grilles 16× 16 On considère dans un premier temps des données
générées sur des grilles cartésiennes de taille 16× 16. Pour la comparaison, la résolution
grossière de la méthode ϕ-FEM-M, est réalisée sur une grille de même résolution.
On choisit alors de comparer les approches pour différentes tailles de grille fine : 32, 64,
128 et 256.
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Figure 5.18 – Cas test 1, données 16× 16. Gauche : erreur relative L2 en fonction
de h. Droite : temps de calcul des méthodes.

On voit alors sur les résultats présentés à la Figure 5.18 (gauche) que les trois méthodes
basées sur ϕ-FEM donnent des erreurs comparables, moins élevées que les erreurs de
Standard-FEM. Cependant, il est intéressant de remarquer (c.f. Figure 5.18 (droite))
que ces résultats sont systématiquement obtenus plus rapidement avec l’approche ϕ-
FEM-M-FNO. Ainsi, malgré un entraînement réalisé avec des données très grossières, on
obtient des résultats déjà très intéressants pour notre approche hybride. Cela se remarque
notamment dans la Table 5.2 où la méthode donne toujours les meilleurs résultats.

Résolution Méthode
Temps

(grossier)
Temps
(fin)

Temps
(total)

Erreur
relative

32× 32 Standard-FEM 0.23 6.06× 10−3

ϕ-FEM 0.28 2.87× 10−3

ϕ-FEM-M 0.16 0.20 0.36 2.96× 10−3

ϕ-FEM-M-FNO 0.004 0.21 0.21 2.96× 10−3

64× 64 Standard-FEM 0.36 1.56× 10−3

ϕ-FEM 0.41 6.90× 10−4

ϕ-FEM-M 0.16 0.32 0.48 6.85× 10−4

ϕ-FEM-M-FNO 0.004 0.32 0.32 6.85× 10−4

128× 128 Standard-FEM 1 3.85× 10−4

ϕ-FEM 0.88 1.71× 10−4

ϕ-FEM-M 0.16 0.70 0.86 1.67× 10−4

ϕ-FEM-M-FNO 0.004 0.70 0.70 1.67× 10−4

256× 256 Standard-FEM 4.46 9.51× 10−5

ϕ-FEM 2.62 4.31× 10−5

ϕ-FEM-M 0.16 2.17 2.33 4.1× 10−5

ϕ-FEM-M-FNO 0.004 2.17 2.18 4.1× 10−5

Table 5.2 – Cas test 1, données 16× 16. Résultats des différentes méthodes.
Les temps et erreurs correspondent aux valeurs moyennes sur 5 nouvelles données.
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ϕ-FEM-M-FNO : grilles 32× 32 Dans un second temps, il est intéressant d’étudier
les résultats de la méthode lors d’un entraînement sur des données plus fines. Pour cela,
on entraîne ϕ-FEM-FNO avec des données générées sur des grilles 32× 32 et on utilise
la même résolution grossière pour ϕ-FEM-M. On calcule alors l’erreur des différentes
méthodes avec des résolutions fines sur des grilles 64 × 64, 128 × 128, 256 × 256 et
512 × 512. On remarque sur les résultats présentés à la Figure 5.19 l’intérêt de cette
nouvelle approche. En effet, l’initialisation du solveur étant faite avec une prédiction
plus précise et donc plus proche de la solution, le coût de calcul est plus faible que pour
toutes les autres méthodes. De plus, à tolérance fixée comme critère d’arrêt pour les
solveurs itératifs (10−9), les deux approches multigrid offrent ici une meilleure précision
que les deux autres méthodes classiques. On remarque en particulier à la Table 5.3 que
l’approche ϕ-FEM-M-FNO est toujours la plus rapide en temps total, bien que le temps
de résolution grossière soit plus élevé que dans le cas 16× 16, notamment en raison de la
conversion entre les tenseurs numpy et les vecteurs DolfinX.
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Figure 5.19 – Cas test 1, données 32× 32. Gauche : erreur relative L2 en fonction
de h. Droite : temps de calcul des méthodes.

Cas test 2 : le cas 3D Pour le second cas test, nous allons comparer les trois méthodes
basées sur l’approche ϕ-FEM. Pour cela, nous considérons le problème de Poisson avec
conditions de Dirichlet non-homogènes, (4.1) sur des géométries complexes 3D définies à
partir de fonctions gaussiennes, i.e. en adaptant l’équation (5.3) au cas 3D, et donc en
utilisant des fonctions ϕ définies par

ϕ(x, y, z) = (−1)n
n∏
j

(
− 1 + exp

(
−

x2
j

2l2x,j
−

y2
j

2l2y,j
−

z2
j

2l2z,j

))
,

où xjyj
zj

 = Rz(θz)Ry(θy)Rx(θx)

x− µxy − µy
z − µz

 ,
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Résolution Méthode
Temps

(grossier)
Temps
(fin)

Temps
(total)

Erreur
relative

64× 64 Standard-FEM 0.39 1.34× 10−3

ϕ-FEM 0.50 7.64× 10−4

ϕ-FEM-M 0.24 0.34 0.58 5.68× 10−4

ϕ-FEM-M-FNO 0.011 0.36 0.37 5.68× 10−4

128× 128 Standard-FEM 1.02 3.18× 10−4

ϕ-FEM 1.09 1.90× 10−4

ϕ-FEM-M 0.23 0.75 0.98 1.40× 10−4

ϕ-FEM-M-FNO 0.011 0.88 0.90 1.40× 10−4

256× 256 Standard-FEM 4.29 7.91× 10−5

ϕ-FEM 3.46 4.71× 10−5

ϕ-FEM-M 0.22 2.34 2.56 3.44× 10−5

ϕ-FEM-M-FNO 0.011 2.49 2.50 3.44× 10−5

512× 512 Standard-FEM 22.06 2.12× 10−5

ϕ-FEM 13.16 1.18× 10−5

ϕ-FEM-M 0.23 9.12 9.35 8.41× 10−6

ϕ-FEM-M-FNO 0.011 8.62 8.64 8.41× 10−6

Table 5.3 – Cas test 1, données 32× 32. Résultats des différentes méthodes.
Les temps et erreurs correspondent aux valeurs moyennes sur 5 nouvelles données.

avec

Rx(θx) =

1 0 0
0 cos θx − sin θx
0 sin θx cos θx

 , Ry(θy) =

 cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy

 ,

Rz(θz) =

cos θz − sin θz 0
sin θz cos θz 0

0 0 1

 ,
où l’ensemble des paramètres est choisi aléatoirement avec la seule contrainte que la
géométrie construite soit connexe.

Le second membre f et les conditions de bord g sont eux adaptés de (4.11) et (4.12)
et sont donnés par

f(A,µ0,µ1,µ2,σx,σy ,σz)(x, y, z) = A exp
(
−(x− µ0)2

2σ2
x

− (y − µ1)2

2σ2
y

− (z − µ2)2

2σ2
z

)
,

et
g(α,β)(x, y) = α

(
(x− 0.5)2 − (y − 0.5)2

)
cos (βzπ) ,

où les différents paramètres sont choisis aléatoirement selon des distributions uniformes.
Pour l’approche basée sur le FNO, on génère un ensemble de 250 données séparées en

200 données d’entraînement et 50 données de validation. Ces données sont générées sur
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des grilles cartésiennes de résolution 20× 20× 20 et on réalise un entraînement sur 200
epochs, en utilisant des batches de taille 8 et en fixant le nombre de modes conservés
dans chaque direction à 8. De plus, la fonctionnelle à minimiser est l’adaptation 3D de la
norme H1, définie par (4.5).

Une fois l’opérateur ϕ-FEM-FNO entraîné, on considère un échantillon de 6 nouvelles
données de test pour évaluer les performances des trois approches ϕ-FEM. Une représen-
tation de 3 des 6 solutions de référence obtenues par Standard-FEM sur un maillage fin
est donnée à la Figure 5.20 afin d’illustrer la variabilité des géométries considérées.

-9.0e-03 -1.2e-03 6.5e-03 1.4e-02 2.2e-02
  

-4.8e-02 -2.4e-02 5.5e-04 2.5e-02 4.9e-02
   

-1.2e-02 -7.8e-03 -3.8e-03 2.3e-04 4.3e-03
    

Figure 5.20 – Cas test 2. Représentation de 3 solutions de référence obtenues par
Standard-FEM.

La résolution utilisée pour la génération des données étant fixée à 20× 20× 20, afin
de comparer les différentes méthodes, nous considérerons 3 nouvelles résolutions pour
les tests : 40× 40× 40, 80× 80× 80 et 160× 160× 160. Le solveur itératif pour toutes
les méthodes sera une nouvelle fois le Gradient BiConjugué Stabilisé avec une tolérance
de convergence fixée à 10−9. Pour ϕ-FEM-M, la résolution grossière sera réalisée avec
un solveur direct sur une grille de taille N/2. Enfin, pour l’approche ϕ-FEM le solveur
itératif sera combiné à un pré-conditionneur LU.

Pour illustrer l’intérêt de notre approche ϕ-FEM-M-FNO, l’erreur relative L2 et
le temps de calcul sont mesurés. Les résultats présentés à la Figure 5.21 où l’erreur
moyenne est représentée en fonction du temps de calcul moyen (avec les zones de couleurs
indiquant les écarts-types) montrent que ϕ-FEM-M-FNO est systématiquement plus
rapide que ϕ-FEM-M qui elle est plus rapide que ϕ-FEM. De plus les erreurs entre les
deux approches multigrid sont comparables, et plus faibles que celles de la méthode
ϕ-FEM classique.

5.4 Conclusion
Dans ce dernier chapitre, nous avons présenté deux méthodes permettant d’utiliser

des fonctions level-set, bases de la méthode ϕ-FEM en pratique.
Dans un premier temps, nous avons présenté une méthode utilisée pour construire des
maillages conformes à partir de fonctions level-set. Nous avons ensuite présenté plusieurs
méthodes permettant d’appliquer les méthodes ϕ-FEM et Standard-FEM à des images
binaires.
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Figure 5.21 – Cas test 2. Résultats obtenus avec les différentes méthodes ϕ-FEM.
En haut à gauche : résolution 40× 40× 40. En haut à droite : résolution 80× 80× 80.
En bas : résolution 160× 160× 160.

Par la suite, nous avons proposé une nouvelle architecture, basée sur l’approche
multigrid, permettant de réduire le coût de calcul de la méthode ϕ-FEM. Une brève étude
numérique a alors mis en évidence les gains offerts par l’utilisation de cette méthode par
rapport à ϕ-FEM ainsi qu’à Standard-FEM.

Finalement, à partir de l’architecture ϕ-FEM-M et de la méthode ϕ-FEM-FNO
présentées précédemment, nous avons construit une nouvelle méthode hybride qui a offert
des résultats très intéressants, notamment dans le cas 3D puisqu’elle permet de réduire
le coût de calcul de l’approche ϕ-FEM-M.





6 Conclusion

Dans ce travail, nous avons introduit et analysé différentes déclinaisons de la méthode
ϕ-FEM, en montrant sa pertinence pour le traitement d’équations aux dérivées partielles
sur des géométries complexes. L’étude s’est articulée autour de plusieurs axes
complémentaires. Nous avons d’abord considéré l’adaptation de la méthode à divers
types de conditions aux limites et d’équations modèles, telles que le problème de Poisson,
l’équation de la chaleur et les problèmes d’élasticité, ce qui a permis de mettre en
évidence sa robustesse et ses performances par rapport aux approches éléments finis
classiques. Dans un second temps, nous avons proposé une méthode en différences finies,
nommée ϕ-FD, directement inspirée de ϕ-FEM. Celle-ci conserve les atouts théoriques et
numériques de convergence de la méthode initiale, tout en offrant une implémentation
simplifiée.

Une autre direction majeure a été l’intégration de ϕ-FEM avec des approches issues
de l’apprentissage automatique, en particulier les architectures de type Fourier Neural
Operator. L’approche hybride ϕ-FEM-FNO a montré sa capacité à accélérer
considérablement les calculs tout en conservant une précision satisfaisante, cela avec un
volume de données d’entraînement limité, y compris dans des situations complexes.

Parallèlement, nous avons étudié la mise en œuvre pratique de la méthode ϕ-FEM et
de la méthode Standard-FEM à partir de fonctions level-set et d’images binaires.
Enfin, nous avons proposé une architecture multigrid dédiée à la réduction du coût de
calcul de l’approche ϕ-FEM. La combinaison de cet outil avec l’approche ϕ-FEM-FNO
a conduit à une méthode hybride particulièrement prometteuse, notamment pour les
problèmes tridimensionnels, où les gains de performance se sont révélés significatifs.

Dans l’ensemble, ce travail souligne le potentiel de la méthode ϕ-FEM, à la fois comme
alternative aux méthodes classiques et comme socle pour des développements hybrides
intégrant des techniques modernes d’apprentissage et de calcul haute performance.

Ces résultats ouvrent néanmoins de nombreuses perspectives de recherche. Les schémas
permettant de traiter les conditions mixtes, que ce soit pour le problème de Poisson
ou pour les problèmes d’élasticité, ont été étudiés numériquement, mais leur l’aspect
théorique reste encore à traiter. De plus, les problèmes d’élasticité considérés tout au long
de ce manuscrit étaient limités au cadre statique, alors que l’extension aux problèmes
dynamiques constitue un prolongement naturel et essentiel pour la modélisation de
phénomènes concrets. Plus largement, l’adaptation de la méthode ϕ-FEM au cadre de

159



160 CHAPITRE 6. CONCLUSION

l’élasticité non linéaire représente un défi théorique et numérique majeur, mais également
une étape incontournable vers des applications concrètes, notamment en biomécanique.
La possibilité d’exploiter directement des données issues d’images confère à ϕ-FEM un
avantage naturel pour la simulation du comportement mécanique d’organes, domaine
dans lequel la prise en compte d’effets non linéaires est indispensable. L’association de
cette approche avec des techniques d’apprentissage automatique, telles que ϕ-FEM-FNO,
pourrait alors permettre de développer des outils capables de fournir des prédictions
rapides et fiables, ouvrant la voie à des applications en chirurgie assistée par ordinateur
ou en planification thérapeutique personnalisée.

Parallèlement, la méthode ϕ-FD offre, elle aussi, de nombreuses pistes de recherche.
Son extension aux conditions de Neumann constitue une évolution naturelle du travail
présenté ici. De plus, la compatibilité de sa structure régulière avec les architectures de type
FNO ouvre la perspective d’une méthode ϕ-FD-FNO dont la comparaison avec ϕ-FEM-
FNO serait particulièrement intéressante. Enfin, les méthodes hybrides développées dans
ce manuscrit, telles que ϕ-FEM-FNO, ϕ-FEM-M et ϕ-FEM-M-FNO, restent largement à
explorer. Leur application à des problèmes dynamiques, à des conditions mixtes ou à des
configurations tridimensionnelles de grande taille constitue un champ de recherche riche.

En conclusion, les contributions présentées dans ce manuscrit témoignent de la richesse
et de la flexibilité de la méthode ϕ-FEM et de ses variantes. Elles montrent que cette
approche, bien au-delà de sa robustesse numérique, constitue un cadre de développement
particulièrement adapté aux défis actuels du calcul scientifique, et qu’elle possède le
potentiel de s’imposer comme un outil de référence pour la simulation de phénomènes
complexes, à l’interface entre mathématiques appliquées, calcul haute performance et
apprentissage automatique.



A Annexes du Chapitre 3

A.1 Exemple de code python pour ϕ-FD

import numpy as np
import s c ipy . spar s e as sp
from sc ipy . spar s e . l i n a l g import sp so l v e

# Radius o f the domain
R = 0.3 + 1e−10

# Parameter o f p ena l i z a t i o n and s t a b i l i z a t i o n
sigma , gamma = 0 .01 , 1 . 0

# Construct ion o f the g r id
Nx, Ny = 100 , 100
x , y = np . l i n s p a c e (0 , 1 , Nx + 1) , np . l i n s p a c e (0 , 1 , Ny + 1)
hx , hy = x [ 1 ] − x [ 0 ] , y [ 1 ] − y [ 0 ]
X, Y = np . meshgrid (x , y )

# Computation o f the exact so lu t i on , exact source term and the
l e v e l−s e t

r = lambda x , y : np . s q r t ( ( x − 0 . 5 ) ∗ (x − 0 . 5 ) + (y − 0 . 5 ) ∗ (y
− 0 . 5 ) + 1e−12)

K = np . p i / 2 / R
ue = lambda x , y : np . cos (K ∗ r (x , y ) )
f = lambda x , y : K ∗ K ∗ np . cos (K ∗ r (x , y ) ) + K ∗ np . s i n (K ∗ r

(x , y ) ) / r (x , y )
phi = lambda x , y : ( x − 0 . 5 ) ∗ (x − 0 . 5 ) + (y − 0 . 5 ) ∗ (y −

0 . 5 ) − R ∗ R
ph i i j = phi (X, Y)
ind = ( p h i i j < 0) + 0
mask = sp . d iags ( d i agona l s=ind . r av e l ( ) )
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indOut = 1 − ind

# Laplac ian matrix
D2x = (1 / hx / hx ) ∗ sp . d iags (

d i agona l s =[−1, 2 , −1] , o f f s e t s =[−1, 0 , 1 ] , shape=(Nx + 1 ,
Nx + 1)

)
D2y = (1 / hy / hy ) ∗ sp . d iags (

d i agona l s =[−1, 2 , −1] , o f f s e t s =[−1, 0 , 1 ] , shape=(Ny + 1 ,
Ny + 1)

)
D2x_2d = sp . kron ( sp . eye (Ny + 1) , D2x)
D2y_2d = sp . kron (D2y , sp . eye (Nx + 1) )
A = mask @ (D2x_2d + D2y_2d)

# Boundary cond i t i on s
diag = np . z e r o s ( (Nx + 1) ∗ (Ny + 1) )
diagxp = np . z e ro s ( (Nx + 1) ∗ (Ny + 1) − 1)
diagxm = np . z e r o s ( (Nx + 1) ∗ (Ny + 1) − 1)
diagyp = np . z e ro s ( (Nx + 1) ∗ Ny)
diagym = np . z e r o s ( (Nx + 1) ∗ Ny)
actGx = np . z e ro s ( (Ny + 1 , Nx + 1) )
actGy = np . z e ro s ( (Ny + 1 , Nx + 1) )

indx = ind [ : , 1 : Nx + 1 ] − ind [ : , 0 :Nx ]
J , I = np . where ( ( indx == 1) | ( indx == −1) )
f o r k in range (np . shape ( I ) [ 0 ] ) :

i f indx [ J [ k ] , I [ k ] ] == 1 :
indOut [ J [ k ] , I [ k ] ] , actGx [ J [ k ] , I [ k ] + 1 ] = 0 , 1

e l s e :
indOut [ J [ k ] , I [ k ] + 1 ] , actGx [ J [ k ] , I [ k ] ] = 0 , 1

phiS = np . square ( p h i i j [ J , I ] ) + np . square ( p h i i j [ J , I + 1 ] )
diag [ I + (Nx + 1) ∗ J ] = p h i i j [ J , I + 1 ] ∗ p h i i j [ J , I + 1 ] /

phiS
diagxp [ I + (Nx + 1) ∗ J ] = −p h i i j [ J , I ] ∗ p h i i j [ J , I + 1 ] /

phiS
diag [ I + 1 + (Nx + 1) ∗ J ] = p h i i j [ J , I ] ∗ p h i i j [ J , I ] / phiS
diagxm [ I + (Nx + 1) ∗ J ] = −p h i i j [ J , I ] ∗ p h i i j [ J , I + 1 ] /

phiS

indy = ind [ 1 : Ny + 1 , : ] − ind [ 0 :Ny, : ]
J , I = np . where ( ( indy == 1) | ( indy == −1) )
f o r k in range (np . shape ( I ) [ 0 ] ) :

i f indy [ J [ k ] , I [ k ] ] == 1 :
indOut [ J [ k ] , I [ k ] ] , actGy [ J [ k ] + 1 , I [ k ] ] = 0 , 1



A.1. EXEMPLE DE CODE PYTHON POUR ϕ-FD 163

e l s e :
indOut [ J [ k ] + 1 , I [ k ] ] , actGy [ J [ k ] , I [ k ] ] = 0 , 1

phiS = np . square ( p h i i j [ J , I ] ) + np . square ( p h i i j [ J + 1 , I ] )
d iag [ I + (Nx + 1) ∗ J ] += ph i i j [ J + 1 , I ] ∗ p h i i j [ J + 1 , I ] /

phiS
diagyp [ I + (Nx + 1) ∗ J ] = −p h i i j [ J , I ] ∗ p h i i j [ J + 1 , I ] /

phiS
diag [ I + (Nx + 1) ∗ ( J + 1) ] += ph i i j [ J , I ] ∗ p h i i j [ J , I ] /

phiS
diagym [ I + (Nx + 1) ∗ J ] = −p h i i j [ J , I ] ∗ p h i i j [ J + 1 , I ] /

phiS

B = (gamma / hx / hy ) ∗ sp . d iags (
d i agona l s=(diagym , diagxm , diag , diagxp , diagyp ) ,
o f f s e t s=(−Nx − 1 , −1, 0 , 1 , Nx + 1) ,

)

# S t a b i l i z a t i o n
maskGx = sp . d iags ( d i agona l s=actGx . r av e l ( ) )
maskGy = sp . d iags ( d i agona l s=actGy . r av e l ( ) )
C = sigma ∗ hx ∗ hy ∗ (D2x_2d .T @ maskGx @ D2x_2d + D2y_2d .T @

maskGy @ D2y_2d)

# Pena l i z a t i on out s id e
D = sp . d iags ( d i agona l s=indOut . r av e l ( ) )

# Linear system
A, b = (A + B + C + D) . t o c s r ( ) , ( ind ∗ f (X, Y) ) . r av e l ( )
u = spso l v e (A, b) . reshape (Ny + 1 , Nx + 1)

# Computation o f the e r r o r s
u r e f = ue (X, Y)
e = ind ∗ (u − ur e f )
eL2 = np . l i n a l g . norm( e ) ∗ np . s q r t ( hx ∗ hy )
emax = np . l i n a l g . norm( e , np . i n f )
p r i n t ( eL2 , emax)

Listing A.1 – Implementation Python de ϕ-FD.





B Adaptation du learning rate dans le contexte
d’apprentissage en ligne

Dans cette Annexe, nous présentons un travail réalisé dans le cadre du « Treizième
atelier de résolution de problèmes industriels de Montréal » qui s’est déroulé du 21 au 25
août 2023. Il a été réalisé en collaboration avec Jean-Bernard Hayet, Amey Kaloti, Samir
Karam, Jean-Pierre Noot, Nassim Razaaly, Sébastien Tran Tien et Killian Verdure sur
un sujet proposé par Brigitte Jaumard et Jean-Michel Sellier.

L’apprentissage automatique en ligne (online learning) désigne un ensemble de
méthodes d’apprentissage supervisé où les données arrivent en continu et ne peuvent
ainsi pas être stockées pour réaliser un unique entraînement ultérieur. Contrairement à
l’apprentissage automatique traditionnel (hors ligne), où l’ensemble de données est fixe,
dans l’apprentissage en ligne les données prennent la forme d’une série temporelle, seules
les dernières valeurs étant disponibles à un moment donné.

Comme nous l’avons expliqué au Chapitre 4, lors d’un entraînement d’une méthode
de machine learning, il est nécessaire de spécifier un taux d’apprentissage (learning rate)
qui influe sur la convergence de la méthode d’optimisation. Cependant, pour les méthodes
en ligne, ce paramètre détermine la réactivité du modèle face à de nouvelles données.
Une partie de la difficulté de l’apprentissage en ligne réside ainsi dans le choix de ce
paramètre : il doit permettre aux prédictions de prendre en compte les observations
futures tout en restant cohérentes avec les observations passées.

Pour relever ce défi, nous proposons une méthode d’optimisation basée sur la descente
d’hyper-gradient (hypergradient descent).

B.1 Définition du problème

Dans les problèmes de régression traditionnels hors ligne (offline), on dispose d’un
jeu de données d’entraînement :

D0 = {xi,yi}1≤i≤M

comportant M observations, qui sert à entraîner (c’est-à-dire optimiser) un modèle fθ(x)
paramétré par θ.
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D’APPRENTISSAGE EN LIGNE

Par exemple, dans les cas de prévision que nous verrons plus loin, x ∈ Rp représente
un ensemble de p données observées auparavant à un instant t :

(dt, dt+1, dt+2, . . . , dt+p−1),

et y ∈ Rf est l’ensemble des f valeurs futures à prédire :

(dt+p, dt+p+1, . . . , dt+p+f−1).

Pour déterminer les paramètres θ appropriés, on résout un problème d’optimisation
de la forme :

θ∗ = arg min
θ
L(θ),

où L est la fonction objectif à minimiser, qui dans ce cas de régression prend généralement
la forme :

L(θ) = 1
M

∑
(xi,yi)∈D0

‖yi − fθ(xi)‖2.

Pour résoudre ce problème d’optimisation, la plupart des approches utilisent des
variantes de l’algorithme de descente de gradient (gradient descent, GD). Globalement,
GD suit la direction de la plus forte descente. En partant d’une estimation initiale θ0, on
applique des itérations de mise à jour des paramètres selon :

θk = θk−1 − α∇L(θk−1),

où α est appelé pas de gradient ou taux d’apprentissage (learning rate). Dans la littérature,
il est fréquent d’ajuster empiriquement la valeur de ce paramètre au cours d’expériences
et de le conserver constant, mais nous verrons dans la section suivante qu’il existe de
nombreuses manières de le faire évoluer pendant l’entraînement.

En apprentissage en ligne (online learning), on suppose encore qu’au départ, on
dispose d’un jeu de données d’entraînement D0 de M observations, avec lequel on peut
entraîner un modèle initial. La différence est que l’on continue à entraîner le modèle
avec de nouvelles données Dτ , comprenant N �M observations, arrivant à intervalles
réguliers τ , et que l’on utilise pour mettre à jour les paramètres θ.

Ainsi, on produit régulièrement de nouvelles estimations « optimales » des paramètres
θ à partir de ces nouvelles données, selon une règle :

θ(τ)∗ = g
(
θ(τ−1)∗,Dτ

)
.

Notons que cette règle de mise à jour g peut être choisie de différentes manières, avec
une large gamme de comportements allant d’une dépendance exclusive aux dernières
données Dτ (et en oubliant la phase d’entraînement initiale) à une dépendance exclusive
aux données les plus anciennes (et en ignorant les plus récentes). Dans ce projet, nous
supposons que ce compromis est atteint en appliquant un nombre limité K d’itérations
de descente de gradient sur les dernières données :
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θ
(τ)
0 = θ(τ−1)∗ (B.1)

θ
(τ)
k = θ

(τ)
k−1 − α∇L

(τ)(θ(τ)
k−1) (B.2)

θ(τ)∗ = θ
(τ)
K . (B.3)

Remarquons que ces étapes peuvent utiliser soit l’algorithme de descente de gra-
dient stochastique (où l’on utilise une approximation Monte-Carlo du gradient), soit
le vrai gradient (où l’on utilise toutes les données). Le choix entre les deux n’est pas
particulièrement important dans notre contexte.

La fonctionnelle (loss function) utilisée à l’itération τ est donnée par

L(θ) = 1
N

∑
(xi,yi)∈Dτ

‖yi − fθ(xi)‖2.

La question que nous abordons ici est la suivante : dans le contexte en ligne, comment
déterminer le « meilleur » pas de gradient à utiliser ? Les principales difficultés rencontrées
sont :

• la possibilité d’un décalage de données (data shift) entre les Dτ , ce qui peut mener
à un problème d’optimisation très différent entre τ et τ + 1 ;

• la présence de fortes contraintes de temps à respecter, ce qui peut restreindre le
nombre de méthodes utilisables.

B.2 Revue des méthodes existantes

B.2.1 Méthodes d’évolution de α dans le cas hors ligne

La stratégie la plus courante concernant le taux d’apprentissage est de le maintenir
constant. Dans de nombreuses applications récentes, une exploration coûteuse de l’espace
des hyperparamètres peut être effectuée afin de déterminer la meilleure valeur, par
exemple via une recherche en grille (grid search). Cependant, ces méthodes sont beaucoup
trop lentes pour une applicabilité à l’apprentissage en ligne.

Des techniques plus complexes peuvent être conçues pour faire évoluer ce taux
d’apprentissage. Dans le cas des méthodes traditionnelles hors ligne, les principes guidant
ces techniques sont généralement les suivants :

• lorsque l’erreur se dégrade ou a tendance à osciller, il est probablement préférable
de réduire α afin d’effectuer des pas plus petits ;

• lorsque l’erreur diminue de façon constante, mais lente, il est alors préférable
d’augmenter le taux d’apprentissage pour accélérer la convergence ;

• lorsque l’on approche de la fin de l’entraînement et que θ se rapproche de son
optimum, on réduit généralement le taux d’apprentissage afin d’éviter une trop
grande sensibilité aux variations entre batches.
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Figure B.1 – Exemples de learning rate schedulers. Extrait de [70].

Ces principes étant généraux, il est complexe de construire un algorithme systématique
permettant de les appliquer en pratique. Une première famille courante de méthodes
consiste à utiliser le nombre d’itérations pour faire varier le taux d’apprentissage, selon

αk , s(k),

où s est une fonction du nombre actuel d’itérations k. Quelques exemples de telles fonctions
d’évolution (appelées learning rate schedulers) sont donnés à la Fig. B.1. En général,
cette fonction est choisie comme étant décroissante (vers une valeur proche de zéro), mais
son choix implique un réglage, par exemple en réalisant plusieurs entraînements, étape
que nous ne pouvons pas nous permettre de réaliser dans le contexte de l’apprentissage
en ligne.

B.2.2 Méthodes systématiques pour adapter le taux d’apprentissage

Une manière d’éviter le problème de la détermination de α consiste à ne pas utiliser
de méthodes du premier ordre (utilisant le gradient) et à se tourner vers des méthodes
du second ordre (utilisant la matrice hessienne). Cependant, nous écartons cette option
ici, car elle pourrait être très coûteuse, notamment à cause de l’évaluation de la matrice
hessienne de la fonction de coût par rapport aux paramètres du réseau.

Pour les méthodes du premier ordre, la recherche linéaire (line search) fournit un
cadre général pour déterminer le meilleur pas dans l’itération de descente de gradient.
La méthode décrite plus loin dans la Section B.2.2 peut être considérée comme un
cas particulier de cette famille de méthodes. L’idée générale est que, étant donné un
algorithme de descente de gradient, on optimise le pas α en annulant la dérivée de la
fonction objectif par rapport à α. Il est facile de montrer que cela conduit à choisir des
directions de descente consécutives qui sont orthogonales. Nous verrons que la solution
proposée réalise implicitement la même chose.

MacLaurin et al. [62] proposent un algorithme très générique pour estimer les gradients
de la fonction objectif d’un réseau de neurones par rapport à ses hyperparamètres.
L’algorithme fournit le gradient exact et pourrait également être utilisé en considérant le
taux d’apprentissage comme un hyperparamètre particulier ; cependant, il nécessite de
multiples appels à l’auto-différentiation du réseau pour produire les dérivées souhaitées.
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Van Erven et Koolen [87] se sont intéressés à la conception de méthodes adaptatives
pouvant automatiquement obtenir des convergences rapides, sans réglage manuel. Les
taux d’apprentissage ne décroissent pas de manière monotone dans le temps et ne sont pas
ajustés sur la base d’une borne théorique, mais sont pondérés directement en proportion de
leurs performances empiriques sur les données, en utilisant un algorithme de pondération
exponentielle biaisée (tilted exponential weights).

La méthode que nous proposons ici s’inspire de Baydin et al. [7], et optimise également
l’hyperparamètre α. Cependant, nous verrons qu’elle nécessite un nombre minimal
d’opérations supplémentaires par rapport à la descente de gradient standard. D’une
certaine manière, elle peut être considérée comme une méthode apprenant le taux
d’apprentissage, et nous verrons qu’elle peut s’intégrer facilement dans un schéma en
ligne.

B.3 Solution proposée

B.3.1 Méthode d’optimisation

Nous utilisons une variante de la descente de gradient connue sous le nom de descente
hyper-gradient (hypergradient descent), proposée dans [7]. Comme mentionné ci-dessus,
en apprentissage en ligne, nous gérons deux boucles :

• une boucle externe sur les batches de données des instants τ ;
• une boucle interne optimisant les paramètres sur le batch spécifique Dτ .
Nous mettons à jour α à chaque itération de la boucle interne. Nous utiliserons donc la

notation α(τ)
k pour désigner le taux d’apprentissage utilisé pour le batch Dτ à l’itération

k. La règle de mise à jour pour α(τ) est donnée, par analogie avec la descente de gradient
stochastique, par :

α
(τ)
k = α

(τ)
k−1 − β

∂L(τ)(θk−1)
∂α

,

où β est appelé taux d’apprentissage d’hyper-gradient (hyper-gradient learning rate).
En utilisant la règle de la dérivée en chaîne, on obtient :

∂L(τ)(θ(τ)
k−1)

∂α
= ∇L(θ(τ)

k−1)T
∂θ

(τ)
k−1
∂α

. (B.4)

En utilisant ensuite la règle de mise à jour de l’équation B.2 et en prenant la dérivée
par rapport à α, on obtient :

∂θ
(τ)
k−1
∂α

= ∂

∂α

(
θ

(τ)
k−2 − α∇L

(τ)(θ(τ)
k−2)

)
= −∇L(τ)(θ(τ)

k−2). (B.5)

En combinant les équations B.4 et B.5, nous obtenons finalement la règle de mise à
jour :

α
(τ)
k = α

(τ)
k−1 + β∇L(τ)(θ(τ)

k−1)T∇L(τ)(θ(τ)
k−2). (B.6)

Analysons les termes de cette équation : la mise à jour de l’équation B.6 est calculée
à partir d’un produit scalaire entre deux gradients. Le premier est le gradient de la
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fonctionnelle de coût par rapport aux paramètres du modèle que l’on utilise comme
direction de descente pour la mise à jour des paramètres ; le second est exactement le
même gradient évalué à l’itération précédente. Ainsi, après une première itération où
l’on utilise éventuellement une valeur initiale α(τ), on poursuit dans la boucle interne en
optimisant (partiellement) le modèle sur Dτ tout en mettant à jour simultanément α
avec l’équation B.6. Le coût supplémentaire est donc uniquement lié à la conservation
en mémoire du gradient de l’itération précédente, ainsi qu’au calcul du produit scalaire
entre deux gradients consécutifs.

Un autre point important à noter est l’introduction d’un nouvel hyperparamètre β ;
conservé constant dans [7]. Nous verrons dans les expériences que sa valeur a un impact
important sur la manière dont évolue α.

Notons également la connexion avec la recherche linéaire : lorsque le paramètre α est
proche de son optimum, les incréments deviennent nuls, ce qui se traduit par des produits
scalaires nuls entre deux directions de recherche consécutives, exactement comme le
prédit la recherche linéaire.

Dans le même article [7], les auteurs étendent ce schéma d’hyper-gradient à d’autres
algorithmes d’optimisation du premier ordre, en particulier ADAM [51], en utilisant la
règle de mise à jour ci-dessus pour son taux d’apprentissage. Ces optimiseurs seront ceux
utilisés dans nos expériences par la suite.

Algorithme 5 : Apprentissage en ligne avec learning rate adaptatif
1 D0 ← AcquisitionDesObservationsInitiales()
2 θ

(0)
0 ← θinit

3 pour k ∈ [1,K ′] faire
4 θ

(0)
k ← θ

(0)
k−1 − α∇L(0)(θ(0)

k−1) si k > 1 alors
5 α

(0)
k = α

(0)
k−1 + β∇L(0)(θ(0)

k−1)T∇L(0)(θ(0)
k−2).

6 sinon
7 α

(0)
1 = α

(0)
0 .

8 τ ← 1
9 tant que True faire

10 Dτ ← AcquisitionDesObservations()
11 α

(τ)
0 ← α

(τ−1)
K′

12 pour k ∈ [1,K ′] faire
13 θ

(τ)
k ← θ

(τ)
k−1 − α∇L(τ)(θ(τ)

k−1) si k > 1 alors
14 α

(τ)
k = α

(τ)
k−1 + β∇L(τ)(θ(τ)

k−1)T∇L(τ)(θ(τ)
k−2).

15 sinon
16 α

(τ)
1 = α

(τ)
0 .

17 τ ← τ + 1
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B.3.2 Schéma d’apprentissage en ligne

Dans l’algorithme 5, nous décrivons le schéma d’apprentissage en ligne proposé,
incluant les mises à jour par hyper-gradient, conformément aux descriptions données
ci-dessus. Il comporte deux phases :

1. une première phase hors ligne d’entraînement sur D0 pour initialiser le modèle ;

2. puis un cycle d’observation optimisé sur les batches successifs Dτ .

La valeur initiale de α à l’instant τ est prise comme la dernière valeur obtenue à l’instant
τ − 1.

Nous concevons nos expériences pour des problèmes de prévision, c’est-à-dire la
prédiction de f valeurs futures dans une série temporelle à partir de l’observation de p
valeurs passées.

B.3.3 Modèles et fonctionnelles de coût

Nous utilisons un réseau à « Mémoire à Long Court Terme » (Long Short Term
Memory, LSTM) [47], une forme de réseaux de neurones récurrents. Ces réseaux sont
spécialisés dans le traitement de séquences de données. Décrivons plus précisément ce
qu’est un LSTM. Soit ht l’état caché, ct l’état de cellule, xt l’entrée au temps t et
ht−1 l’état caché de la couche au temps t − 1. De plus, it, ft, gt et ot sont des valeurs
intermédiaires appelées respectivement porte d’entrée, porte d’oubli, porte de cellule et
porte de sortie. Enfin, σ désigne la fonction d’activation sigmoïde.

Une couche LSTM cherche à résumer le contenu d’une séquence de données observée
jusqu’à l’instant t dans les vecteurs ht et ct, selon les règles de mise à jour suivantes :

it = σ(Wiixt + bii + Whiht−1 + bhi) ,
ft = σ(Wifxt + bif + Whfht−1 + bhf ) ,
gt = tanh(Wigxt + big + Whght−1 + bhg) ,
ot = σ(Wioxt + bio + Whoht−1 + bho) ,
ct = ft � ct−1 + it � gt ,
ht = ot � tanh(ct) ,

où � désigne le produit élément par élément.
La sortie à un instant t de la séquence est le vecteur caché ht. Une représentation de

cette couche est donnée dans la Fig. B.2.
Pour réaliser l’entraînement du LSTM, nous considérons comme fonction de coût

l’erreur quadratique moyenne (Mean Square Error, MSE). Elle est calculée sur l’ensemble
du jeu de données pour la partie hors ligne (nous n’utilisons pas de descente de gradient
stochastique, mais uniquement le vrai gradient sur l’ensemble complet des données).
Pour l’entraînement en ligne, nous calculons la fonctionnelle de coût uniquement sur les
données reçues en ligne, c’est-à-dire chaque nouveau lot de données.
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Figure B.2 – Architecture du LSTM utilisé (issu de [73]).

B.4 Résultats expérimentaux

B.4.1 Mise en place expérimentale

Nous considérons un jeu de données de températures couvrant la période de 2009
à 2016, fourni par le Max Planck Institute. Il est divisé en trois parties correspondant
à des sous-ensembles consécutifs : les données d’entraînement, de validation et de test,
comme illustré dans la Fig. B.3.

Figure B.3 – Séparation du jeu de données.

B.4.2 Évaluation de l’impact de la descente d’hypergradient

Nous comparons l’évolution des fonctionnelles d’entraînement et de validation en
utilisant l’optimiseur Adam d’une part, et Adam combiné à la descente d’hypergradient,
que nous appelons ADAM-HD, d’autre part. Pour cela, dans la Fig. B.4, nous entraînons
un LSTM sur 100 epochs. Les lignes pleines correspondent aux valeurs de loss obtenues
avec l’optimiseur ADAM classique, avec un taux d’apprentissage fixé à α = 10−4. Les
lignes pointillées correspondent aux valeurs de loss obtenues avec ADAM-HD, en partant
de la même valeur initiale α = 10−4. Le taux d’apprentissage d’ADAM-HD converge
vers une valeur d’environ 10−2, ce qui entraîne une accélération de la convergence de la
fonctionnelle, et donc une convergence plus rapide que celle obtenue avec l’Adam original.

Dans la Figure B.5, nous comparons ADAM-HD, partant de α = 10−4, à l’optimiseur
ADAM classique, mais démarrant directement avec la valeur optimale du taux d’apprentis-
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sage donnée par ADAM-HD. Ici, les fonctionnelles d’ADAM convergent plus rapidement
que précédemment. Ainsi, le choix du taux d’apprentissage semble optimal. Il pourrait
alors être intéressant de commencer un processus d’entraînement avec ADAM-HD jus-
qu’à convergence du taux d’apprentissage, puis de continuer avec un Adam classique en
utilisant la valeur optimale obtenue par ADAM-HD, ce qui est laissé pour des travaux
futurs.

Figure B.4 – Pointillés : ADAM-HD. Trait plein : ADAM avec α = 10−4 initial.

Figure B.5 – Pointillés : ADAM-HD. Trait plein : ADAM avec α = 10−2 initial comme
donné par la méthode ADAM-HD à la Figure B.4.
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B.5 Conclusion
L’utilisation de la descente de gradient hyper-paramétrique s’est révélée être une

approche prometteuse, renforçant l’adaptabilité des modèles et soulignant son intérêt dans
le contexte dynamique de l’apprentissage en ligne. Nous avons exploré son implémentation
pratique en développant des modèles de type « Réseaux à Mémoire Long Court Terme »
(LSTM), spécialement conçus pour la prédiction de séries temporelles. Ces modèles, testés
sur des jeux de données réalistes, nous ont permis de comparer l’optimiseur ADAM
classique avec sa version enrichie par la descente d’hypergradient. Cette analyse a non
seulement renforcé notre compréhension du choix du taux d’apprentissage et de son
impact, mais elle nous a également conduits à proposer une solution efficace aux défis de
l’apprentissage en ligne dans des contextes où la distribution des données d’entrée évolue
au cours du temps.
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Abstract

ϕ-FEM is a new finite element method, proposed to solve partial differential equations on complex domains,
using simple non-conforming meshes. The method relies on the use of a level-set function ϕ, which defines the
domain and its boundary. In this manuscript, we recall the method in the simple case of the resolution of the
Poisson equation with Dirichlet boundary conditions. We further propose a new way to treat this problem with
a penalized version of the method, which provides optimal convergence. Then, we extend our study beyond
this simple case, and we propose a numerically optimal ϕ-FEM scheme to solve the Poisson equation with
mixed Dirichlet/Neumann boundary conditions. We also propose different schemes to treat the Heat equation,
linear elasticity equation and hyperelastic problems. The rest of the manuscript is devoted to the presentation
of different evolutions of ϕ-FEM. We first propose a Finite Difference scheme based on the ϕ-FEM paradigm.
To provide a real-time method, we then explore the combination of ϕ-FEM with Neural Operators, where we
propose ϕ-FEM-FNO, which is capable of predicting precise results much faster than FEM based methods.
Finally, in the idea of providing opening evolutions, we propose two combinations with the multigrid approach :
one based only on ϕ-FEM, the second on ϕ-FEM-FNO. The proposed results open many interesting perspectives
and challenges for ϕ-FEM.

Résumé

ϕ-FEM est une nouvelle méthode éléments finis, proposée pour résoudre des équations aux dérivées partielles
sur des domaines complexes, en utilisant des maillages simples non-conformes. La méthode repose sur l’utilisation
d’une fonction level-set ϕ, décrivant le domaine et sa frontière. Dans ce manuscrit, nous rappelons d’abord la
méthode appliquée à la résolution du problème de Poisson avec conditions de Dirichlet. Nous proposons ensuite
une nouvelle façon de traiter ce problème avec une version pénalisée de la méthode, offrant une convergence
optimale. Par la suite, nous étendons notre étude à des problèmes complexes et nous proposons en particulier
un schéma ϕ-FEM numériquement optimal pour résoudre le problème de Poisson avec conditions mixtes
Dirichlet/Neumann. Nous proposons également différents schémas ϕ-FEM permettant de résoudre l’équation de
la chaleur ou des problèmes d’élasticité linéaire et non linéaire. La suite du manuscrit est dédiée à la présentation
de plusieurs évolutions de ϕ-FEM. Dans un premier temps, nous proposons un schéma aux différences finies basé
sur l’approche ϕ-FEM. Pour obtenir une méthode temps réel, nous explorons ensuite la combinaison de ϕ-FEM
avec les opérateurs neuraux, où nous proposons ϕ-FEM-FNO, capable de prédire des résultats précis beaucoup
plus rapidement que les méthodes éléments finis. Finalement, dans l’idée de proposer diverses pistes d’évolutions,
nous proposons deux combinaisons avec l’approche multigrid : l’une basée uniquement sur ϕ-FEM, l’autre sur
ϕ-FEM-FNO. Les résultats proposés ouvrent alors de nombreux challenges et perspectives pour ϕ-FEM.
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